Investigating of Moringa Oleifera Role on Gut Microbiota Composition and Inflammation Associated with Obesity Following High Fat Diet Feeding

  • Elham M. Youssef Elabd Biochemistry Department, National Research Centre, Cairo
  • Safaa M. Morsy Madical Biochemistry Department, National Research Centre, Cairo
  • Heba A. Elmalt Medical Biochemistry Department, National Research Centre, Cairo
Keywords: Moringa oleifera, Obesity, Gut bacteria, Bifidobacterium, Lactobacillus

Abstract

AIM: The alteration in the gut microbial community has been regarded as one of the main factors related to obesity and metabolic disorders. To date, little is known about Moringa oleifera as a nutritional intervention to modulate the microbiota imbalance associated with obesity. Therefore we aim to explore the role of aqueous Moringa oleiferous leaf extract on Lactobacilli and Bifidobacteria in high-fat diet-induced obesity and to investigate whether any restoration in the number of caecal Lactobacilli and Bifidobacteria could modulate obesity-induced inflammation.

METHODS: Young Swiss albino mice were divided into three groups according to their diet. Two of them were fed on either high fat diet or high fat diet+aqueous extract of Moringa oleifera leaf, while the third group was fed on the control diet. Bacterial DNAs were isolated from the mice digesta samples for bacteria level estimation using Quantitative real-time polymerase chain reaction along with serum interleukin-6 and lipid profile

RESULTS: Compared to the normal control mice, high-fat diet feeding mice showed significantly reduced intestinal levels of Bifidobacteria, and increased body weight, interleukin 6, and levels of Lactobacilli. Upon treatment with Moringa oleifera, body weight, interleukin 6, and both bacteria levels were significantly restored

CONCLUSIONS: Our findings suggest that Moringa oliefera aqueous leaf extract may contribute towards the pathophysiological regulation of weight gain, inflammation associated with high-fat-induced-obesity through gut bacteria modulation.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007; 131(2):242-56. https://doi.org/10.1016/j.cell.2007.10.004 PMid:17956727

CHUNG WK, LEIBEL RL. Genetics of Body Weight Regulation. Food and Addiction: A Comprehensive Handbook, 2012.

Weihrauch-Blüher S, Richter M, Staege MS. Body weight regulation, socioeconomic status and epigenetic alterations. Metabolism. 2018. https://doi.org/10.1016/j.metabol.2018.03.006 PMid:29526537

Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006; 444(7122):1027. https://doi.org/10.1038/nature05414 PMid:17183312

Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science. 2012; 6:1223813. https://doi.org/10.1126/science.1223813

Venkatesh M, Mukherjee S, Wang H, Li H, Sun K, Benechet AP, Qiu Z, Maher L, Redinbo MR, Phillips RS, Fleet JC. Symbiotic bacterial metabolites regulate gastrointestinal barrier function via the xenobiotic sensor PXR and Toll-like receptor 4. Immunity. 2014; 41(2):296-310. https://doi.org/10.1016/j.immuni.2014.06.014 PMid:25065623 PMCid:PMC4142105

Verdam FJ, Fuentes S, de Jonge C, Zoetendal EG, Erbil R, Greve JW, Buurman WA, de Vos WM, Rensen SS. Human intestinal microbiota composition is associated with local and systemic inflammation in obesity. Obesity. 2013; 21(12). https://doi.org/10.1002/oby.20466 PMid:23526699

Cani PD, Dewever C, Delzenne NM. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. British Journal of Nutrition. 2004; 92(3):521-6. https://doi.org/10.1079/BJN20041225 PMid:15469657

Hur KY. Gut Microbiota and Metabolic Disorders. The Journal of Korean Diabetes. 2017; 18(2):63-70. https://doi.org/10.4093/jkd.2017.18.2.63

Sanz Y, Santacruz A, Gauffin P. Gut microbiota in obesity and metabolic disorders. Proceedings of the Nutrition Society. 2010; 69(3):434-41. https://doi.org/10.1017/S0029665110001813 PMid:20540826

Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. The ISME journal. 2011; 5(2):220. https://doi.org/10.1038/ismej.2010.118 PMid:20686513 PMCid:PMC3105703

O'Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Frontiers in microbiology. 2016; 7:925. https://doi.org/10.3389/fmicb.2016.00925 PMid:27379055 PMCid:PMC4908950

Arboleya S, Watkins C, Stanton C, Ross RP. Gut bifidobacteria populations in human health and aging. Frontiers in microbiology. 2016; 7:1204. https://doi.org/10.3389/fmicb.2016.01204 PMid:27594848 PMCid:PMC4990546

Walter J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Applied and environmental microbiology. 2008; 74(16):4985-96. https://doi.org/10.1128/AEM.00753-08 PMid:18539818 PMCid:PMC2519286

Flint HJ, Duncan SH, Scott KP, Louis P. Links between diet, gut microbiota composition and gut metabolism. Proceedings of the Nutrition Society. 2015; 74(1):13-22. https://doi.org/10.1017/S0029665114001463 PMid:25268552

Hill MJ. Intestinal flora and endogenous vitamin synthesis. European journal of cancer prevention: the official journal of the European Cancer Prevention Organisation (ECP). 1997; 6:S43-5.

Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. European journal of nutrition. 2017; 9:1-24.

Musso G, Gambino R, Cassader M. Obesity, diabetes, and gut microbiota: the hygiene hypothesis expanded? Diabetes care. 2010; 33(10):2277-84. https://doi.org/10.2337/dc10-0556 PMid:20876708 PMCid:PMC2945175

Kumar PS, Mishra D, Ghosh G, Panda CS. Medicinal uses and pharmacological properties of Moringa oleifera. International Journal of Phytomedicine. 2010; 2(3).

Anwar F, Latif S, Ashraf M, Gilani AH. Moringa oleifera: a food plant with multiple medicinal uses. Phytotherapy research. 2007; 21(1):17-25. https://doi.org/10.1002/ptr.2023 PMid:17089328

Caceres A, Saravia A, Rizzo S, Zabala L, De Leon E, Nave F. Pharmacologie properties of Moringa oleifera. 2: Screening for antispasmodic, antiinflammatory and diuretic activity. Journal of Ethnopharmacology. 1992; 36(3):233-7. https://doi.org/10.1016/0378-8741(92)90049-W

Zaffer M, Ahmad S, Sharma R, Mahajan S, Gupta A, Agnihotri RK. Antibacterial activity of bark extracts of Moringa oleifera Lam. against some selected bacteria. Pak J Pharm Sci. 2014; 27(6):1857-62. PMid:25362592

Jaiswal D, Rai PK, Kumar A, Mehta S, Watal G. Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. Journal of ethnopharmacology. 2009; 123(3):392-6. https://doi.org/10.1016/j.jep.2009.03.036 PMid:19501271

Al-Malki AL, El Rabey HA. The antidiabetic effect of low doses of Moringa oleifera Lam. seeds on streptozotocin induced diabetes and diabetic nephropathy in male rats. BioMed research international. 2015; 2015.

Toppo R, Roy BK, Gora RH, Baxla SL, Kumar P. Hepatoprotective activity of Moringa oleifera against cadmium toxicity in rats. Veterinary world. 2015; 8(4):537. https://doi.org/10.14202/vetworld.2015.537-540 PMid:27047130 PMCid:PMC4774807

Ghasi S, Nwobodo E, Ofili JO. Hypocholesterolemic effects of crude extract of leaf of Moringa oleifera Lam in high-fat diet fed Wistar rats. Journal of Ethnopharmacology. 2000; 69(1):21-25. https://doi.org/10.1016/S0378-8741(99)00106-3

Saboonchian F, Jamei R, Sarghein SH. Phenolic and flavonoid content of Elaeagnus angustifolia L. (leaf and flower). Avicenna journal of phytomedicine. 2014; 4(4):231. PMid:25068137 PMCid:PMC4110780

Isitua CC, Ibeh IN. Toxicological assessment of aqueous extract of Moringa oleifera and Caulis bambusae leaves in rabbits. Journal of Clinical Toxicology S. 2013; 12:4.

Nascimento AF, Sugizaki MM, Leopoldo AS, Lima-Leopoldo AP, Luvizotto RA, Nogueira CR, Cicogna AC. A hypercaloric pellet-diet cycle induces obesity and co-morbidities in Wistar rats. Arquivos Brasileiros de Endocrinologia & Metabologia. 2008; 52(6):968-74. https://doi.org/10.1590/S0004-27302008000600007

Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clinical chemistry. 1972; 18(6):499-502. PMid:4337382

Yang YW, Chen MK, Yang BY, Huang XJ, Zhang XR, He LQ, Zhang J, Hua ZC. Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in mouse feces. Applied and environmental microbiology. 2015; 81(19):6749-56. https://doi.org/10.1128/AEM.01906-15 PMid:26187967 PMCid:PMC4561689

Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. The Journal of clinical investigation. 2011; 121(6):2094-101. https://doi.org/10.1172/JCI45887 PMid:21633177 PMCid:PMC3104761

Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. The Journal of clinical investigation. 2011; 121(6):2111-7. https://doi.org/10.1172/JCI57132 PMid:21633179 PMCid:PMC3104776

Bäckhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI. Host-bacterial mutualism in the human intestine. Science. 2005; 307(5717):1915-20. https://doi.org/10.1126/science.1104816 PMid:15790844

Duda-Chodak A, Tarko T, Satora P, Sroka P. Interaction of dietary compounds, especially polyphenols, with the intestinal microbiota: a review. European journal of nutrition. 2015; 54(3):325-41. https://doi.org/10.1007/s00394-015-0852-y PMid:25672526 PMCid:PMC4365176

Scott KP, Gratz SW, Sheridan PO, Flint HJ, Duncan SH. The influence of diet on the gut microbiota. Pharmacological research. 2013; 69(1):52-60. https://doi.org/10.1016/j.phrs.2012.10.020 PMid:23147033

Hildebrandt MA, Hoffman C, Sherrill-Mix SA. High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity. Nutrition in Clinical Practice. 2010; 25(3):310-1. https://doi.org/10.1177/0884533610368714 PMid:29130781

Turnbaugh PJ, Bäckhed F, Fulton L, Gordon JI. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell host & microbe. 2008; 3(4):213-23. https://doi.org/10.1016/j.chom.2008.02.015 PMid:18407065 PMCid:PMC3687783

Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(31):11070-5. https://doi.org/10.1073/pnas.0504978102 PMid:16033867 PMCid:PMC1176910

Million M, Maraninchi M, Henry M, Armougom F, Richet H, Carrieri P, Valero R, Raccah D, Vialettes B, Raoult D. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. International journal of obesity. 2012; 36(6):817. https://doi.org/10.1038/ijo.2011.153 PMid:21829158 PMCid:PMC3374072

Murphy EF, Cotter PD, Healy S, Marques TM, O'sullivan O, Fouhy F, Clarke SF, O'toole PW, Quigley EM, Stanton C, Ross PR. Composition and energy harvesting capacity of the gut microbiota: relationship to diet, obesity and time in mouse models. Gut. 2010;gut-2010. https://doi.org/10.1136/gut.2010.215665

Sáez-Lara MJ, Robles-Sanchez C, Ruiz-Ojeda FJ, Plaza-Diaz J, Gil A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: a review of human clinical trials. International journal of molecular sciences. 2016; 17(6):928. https://doi.org/10.3390/ijms17060928 PMid:27304953 PMCid:PMC4926461

Amar J, Chabo C, Waget A, Klopp P, Vachoux C, Bermúdezâ€Humarán LG, Smirnova N, Bergé M, Sulpice T, Lahtinen S, Ouwehand A. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: molecular mechanisms and probiotic treatment. EMBO molecular medicine. 2011; 3(9):559-72. https://doi.org/10.1002/emmm.201100159 PMid:21735552 PMCid:PMC3265717

Velagapudi VR, Hezaveh R, Reigstad CS, Gopalacharyulu P, Yetukuri L, Islam S, Felin J, Perkins R, Borén J, OreÅ¡iÄ M, Bäckhed F. The gut microbiota modulates host energy and lipid metabolism in mice. Journal of lipid research. 2010; 51(5):1101-12. https://doi.org/10.1194/jlr.M002774 PMid:20040631 PMCid:PMC2853437

Agus A, Denizot J, Thévenot J, Martinez-Medina M, Massier S, Sauvanet P, Bernalier-Donadille A, Denis S, Hofman P, Bonnet R, Billard E. Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive E. coli infection and intestinal inflammation. Scientific reports. 2016; 6:19032. https://doi.org/10.1038/srep19032 PMid:26742586 PMCid:PMC4705701

Farooq F, Rai M, Tiwari A, Khan AA, Farooq S. Medicinal properties of Moringa oleifera: An overview of promising healer. Journal of Medicinal Plants Research. 2012; 6(27):4368-74

Jain PG, Patil SD, Haswani NG, Girase MV, Surana SJ. Hypolipidemic activity of Moringa oleifera Lam., Moringaceae, on high fat diet induced hyperlipidemia in albino rats. Revista Brasileira de Farmacognosia. 2010; 20(6):969-73. https://doi.org/10.1590/S0102-695X2010005000038

Sonnenburg JL, Chen CT, Gordon JI. Genomic and metabolic studies of the impact of probiotics on a model gut symbiont and host. PLoS biology. 2006; 4(12):e413. https://doi.org/10.1371/journal.pbio.0040413 PMid:17132046 PMCid:PMC1661682

Pachecoâ€Ordaz R, Wallâ€Medrano A, Go-i MG, Ramosâ€Clamontâ€Montfort G, Ayalaâ€Zavala JF, Gonzálezâ€Aguilar GA. Effect of phenolic compounds on the growth of selected probiotic and pathogenic bacteria. Letters in applied microbiology. 2018; 66(1):25-31. https://doi.org/10.1111/lam.12814 PMid:29063625

Rastmanesh R. High polyphenol, low probiotic diet for weight loss because of intestinal microbiota interaction. Chemico-biological interactions. 2011; 189(1-2):1-8. https://doi.org/10.1016/j.cbi.2010.10.002 PMid:20955691

Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, Neyrinck A, Lambert DM, Muccioli GG. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009; 58(8):1091-103. https://doi.org/10.1136/gut.2008.165886 PMid:19240062 PMCid:PMC2702831

Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortu-o MI. Benefits of polyphenols on gut microbiota and implications in human health. The Journal of nutritional biochemistry. 2013; 24(8):1415-22. https://doi.org/10.1016/j.jnutbio.2013.05.001 PMid:23849454

Published
2018-08-19
How to Cite
1.
Elabd EMY, Morsy SM, Elmalt HA. Investigating of Moringa Oleifera Role on Gut Microbiota Composition and Inflammation Associated with Obesity Following High Fat Diet Feeding. Open Access Maced J Med Sci [Internet]. 2018Aug.19 [cited 2020Nov.29];6(8):1359-64. Available from: https://www.id-press.eu/mjms/article/view/oamjms.2018.313
Section
A - Basic Science