Assessment of Photodynamic Therapy and Nanoparticles Effects on Caries Models

  • Ali Saafan Dental Laser Applications Department, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo
  • Mohamed H. Zaazou Restorative and Dental Materials Department, Oral and Dental Research Division, National Research Centre, Cairo
  • Marwa K. Sallam Medical Microbiology and Immunology, Kasr El Aini Faculty of Medicine, Cairo University, Cairo
  • Osama Mosallam Restorative and Dental Materials Department, Oral and Dental Research Division, National Research Centre, Cairo
  • Heba A. El Danaf Restorative and Dental Materials Department, Oral and Dental Research Division, National Research Centre, Cairo
Keywords: Caries, Streptococcus mutans, Diode Laser, Photo-Dynamic Therapy, Silver Nano Particles

Abstract

AIM: To assess the antibacterial competence of 650 nm diode laser, Methylene Blue (MB) and Silver Nano-Particles (Ag NPs) on Streptococcus mutans in biofilm-induced caries models.

MATERIAL AND METHODS: One hundred eighty specimens were prepared and equally divided into 6 groups. One group was untreated (control), and the others were subjected to either MB, laser, Ag NPs, the combination of MB and Laser or MB, laser and Ag NPs.

RESULTS: Comparison of the log10 mean Colony Forming Units per millilitre (CFU/ml) values of each of the treated 5 groups and the control group was found statistically significant (P-value < 0.05).The combination of MB, laser and Ag NPs recorded the greatest reduction (95.28%). MB alone represented the least capable (74.09%). The efficiency differences among the Ag NPs treated group; the Laser treated group and the combined MB/Laser treated group were found statistically insignificant.

CONCLUSION: The combination of MB, 650 nm diode laser and Ag NPs may be among the highly effective modern antimicrobial therapeutics in dentistry.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Selwitz RH, Ismail AI, Pitts NB. Dental caries. Lancet. 2007; 369:51–9. https://doi.org/10.1016/S0140-6736(07)60031-2

Habeeb HM, AL-Mizraqchi AS, Ibraheem AF. Effect of ozonated water on adherent Mutans Streptococci (In vitro study). Journal of Baghdad College of Dentistry. 2009; 21:18-23.

De Almeida Neves A, Coutinho E, Cardoso MV, Lambrechts P, Van Meerbeek B. Current concepts and techniques for caries excavation and adhesion to residual dentin. J Adhes Dent. 2001; 13:7 22.

Banerjee A, Watson TF, Kidd EA. Dentine caries excavation: A review of current clinical techniques. Br Dent J. 2000; 188:476 82. https://doi.org/10.1038/sj.bdj.4800515a

Shu M, Wong L, Miller JH, Sissons CH. Development of multi-species consortia biofilms of oral bacteria as an enamel and root caries model system. Arch Oral Biol. 2000; 45: 27–40. https://doi.org/10.1016/S0003-9969(99)00111-9

Thneibat A, Fontana M, Cochran MA, Gonzalez-Cabezas C, Moore BK, Matis BA, Lund MR. Anticariogenic and antibacterial properties of a copper varnish using an in vitro microbial caries model. Oper Dent. 2008; 33:142–8. https://doi.org/10.2341/07-50 PMid:18435187

Azevedo MS, van de Sande FH, Romano AR, Cenci MS. Microcosm biofilms originating from children with different caries experience have similar cariogenicity under successive sucrose challenges. Caries Res. 2011; 45:510–7. https://doi.org/10.1159/000331210 PMid:21967836

Lee SH, Choi BK, Kim YJ. The cariogenic characters of xylitol-resistant and xylitol-sensitive Streptococcus mutans in biofilm formation with salivary bacteria. Arch Oral Biol. 2012; 57:697–703. https://doi.org/10.1016/j.archoralbio.2011.12.001 PMid:22218085

Luan X, Qin Y, Bi L, Hu C, Zhang Z, Lin J, Zhou CN. Histological evaluation of the safety of toluidine blue-mediated photosensitization to periodontal tissues in mice. Lasers in Medical Science. 2009; 24:162-6. https://doi.org/10.1007/s10103-007-0513-3 PMid:18239960

Jorgensen M, Slots J. Responsible use of antimicrobials in periodontics. J Calif Dent Assoc. 2000; 28:185. PMid:11326532

Bor-Shiunn L, Yueh-Wen L, Jean-San C, Tseng-Ting H, Min-Huey C, Chun-Pin L, Wan-Hong L. Bactericidal effects of diode laser on Streptococcus mutans after irradiation through different thickness of dentin. Lasers in Surgery and Medicine. 2006; 38:62–69. https://doi.org/10.1002/lsm.20279 PMid:16444695

Anjaneyulu K, Nivedhitha S. Influence of calcium hydroxide on the post treatment pain in endodontics. A systematic review. J Conserv Dent. 2014; 17:200-7. https://doi.org/10.4103/0972-0707.131775 PMid:24944439 PMCid:PMC4056387

Auffan M, Rose J, Bottero JY, Rose J, Lowry GV, Jolivet JP, Wiesner MR. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol. 2009; 4:634–641. https://doi.org/10.1038/nnano.2009.242 PMid:19809453

Afkhami F, Pourhashemi SJ, Sadegh M, Salehi Y, Fard MJ. Antibiofilm efficacy of silver nanoparticles as a vehicle for calcium hydroxide medicament against Enterococcus faecalis. J Dent. 2015; 43:1573–9. https://doi.org/10.1016/j.jdent.2015.08.012 PMid:26327612

Hannig M, Kriener L, Hoth-Hannig W, Becker-Willinger C, Schmidt H. Influence of nanocomposite surface coating on biofilm formation in situ. J Nanosci Nanotechnol. 2007; 7:4642-4648. PMid:18283856

Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB. The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents. 2009; 34:103-110. https://doi.org/10.1016/j.ijantimicag.2009.01.017 PMid:19339161

Jia H, Hou W, Wei L, Xu B, Liu X. The structures and antibacterial properties of nano-SiO2 supported silverâ„zinc-silver materials. Dent Mater. 2008; 24:244–249. https://doi.org/10.1016/j.dental.2007.04.015 PMid:17822754

Wu D, Fan W, Kishen A, Gutmann JL, Fan B. Evaluation of the antibacterial efficacy of silver nanoparticles against Enterococcus faecalis biofilm. J Endod. 2014; 40:285–290. https://doi.org/10.1016/j.joen.2013.08.022 PMid:24461420

Duque C, Stipp RN, Wang B, Smith DJ, Höfling JF, Kuramitsu HK, Duncan MJ, Mattos-Graner RO. Down regulation of GbpB, a component of the VicRKregulon, affects biofilm formation and cell surface characteristics of Streptococcus mutans. Infect Immun. 2011; 79:786–796. https://doi.org/10.1128/IAI.00725-10 PMid:21078847 PMCid:PMC3028841

Holla G, Yeluri R, Munshi A. Evaluation of minimum inhibitory and minimum bactericidal concentration of nano-silver base inorganic anti-microbial agent (Novaron®) against streptococcus mutans. Contemp Clin Dent. 2012; 3:288-293. https://doi.org/10.4103/0976-237X.103620 PMid:23293483 PMCid:PMC3532790

Beighton D. The complex oral microflora of high-risk individuals and groups and its role in the caries process. Community Dent Oral Epidemiol. 2005; 33:248–55. https://doi.org/10.1111/j.1600-0528.2005.00232.x PMid:16008631

Marsh PD, Martin MV. Oral microbiology. 5th ed. London, UK: Churchill-Livingstone, 2009.

Pan J, Sun K, Liang Y Sun P, Yang X, Wang J, Zhang J, Zhu W, Fang J, Becker KH. Cold plasma therapy of a tooth root canal infected with enterococcus faecalis biofilms in vitro. J Endod. 2013; 39:105–10. https://doi.org/10.1016/j.joen.2012.08.017 PMid:23228267

Salli KM, Ouwehand AC. The use of in vitro model systems to study dental biofilms associated with caries: A short review. J Oral Microbiol. 2015; 7:26149. https://doi.org/10.3402/jom.v7.26149 PMid:25740099 PMCid:PMC4349908

Steiner-Oliveira C, Rodrigues L, Zanin I, de Carvalho C, Kamiya R, Hara A. An in vitro microbial model associated with sucrose to produce dentin caries lesions. Cent Eur J Biol. 2011; 6:414–421. https://doi.org/10.2478/s11535-011-0011-2

Hetrodt F, Lausch J, Lueckel H, Apel C, Conrads G. Natural saliva as an adjuvant in a secondary caries model based on Streptococcus mutans. Archives of Oral Biology. 2018; 90:138–143. https://doi.org/10.1016/j.archoralbio.2018.03.013 PMid:29614462

Wainwright M. Photodynamic antimicrobial chemotherapy [PACT]. Journal of Antimicrobial Chemotherapy.1998; 42:13-28. https://doi.org/10.1093/jac/42.1.13 PMid:9700525

Shrestha A, Shi Z, Neoh KG, Kishen A. Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity. J Endod. 2010; 36:1030–5. https://doi.org/10.1016/j.joen.2010.02.008 PMid:20478460

Topaloglu N, Guney M, Yuksel S, Gulsoy M. Antibacterial photodynamic therapy with 808 nm and indocyanine green on abrasion wound models. J Biomed Opt. 2015; 20(2):28003. https://doi.org/10.1117/1.JBO.20.2.028003 PMid:25692539

Azizi A, Shademans S, Rezai M, Rahimi A, Lawaf S. Effect of photodynamic therapy with two photosensitizers on streptococcus mutans: In vitro study. Photodiagnosis Photodyn Ther. 2016; 16:66-71. https://doi.org/10.1016/j.pdpdt.2016.08.002 PMid:27521995

Afkhami F, Akbari S, Chiniforush N. Entrococcus faecalis elimination in root canals using silver nanoparticles, photodynamic therapy, diode laser, or laser-activated nanoparticles: an in vitro study. J Endod. 2017; 43(2):279-282. https://doi.org/10.1016/j.joen.2016.08.029 PMid:28027821

Pagonis TC, Chen J, Fontana CR Devalapally H, Ruggiero K, Song X, Foschi F, Dunham J, Skobe Z, Yamazaki H, Kent R, Tanner AC, Amiji MM, Soukos NS. Nanoparticle-based endodontic antimicrobial photodynamic therapy. J Endod. 2010; 36:322–8. https://doi.org/10.1016/j.joen.2009.10.011 PMid:20113801 PMCid:PMC2818330

Gomez G , Huang R, MacPherson M, Ferreira A, Zandona, Gregory R. Photo Inactivation of Streptococcus mutans Biofilm by Violet-Blue. Light Curr Microbiol. 2016; 73:426–433. https://doi.org/10.1007/s00284-016-1075-z PMid:27278805

Fontana CR, Abernethy AD, Som S, Ruggiero K, Doucette S, Marcantonio RC, Boussios C, Kent R, Goodson GM, Tanner ACR, Soukos NS. The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J Periodontal Res. 2009; 44(6):751–759. https://doi.org/10.1111/j.1600-0765.2008.01187.x PMid:19602126 PMCid:PMC2784141

Pereira CA, Romerio RL, Costa AC, Machado AK, Junqueira JC, Jorge AO. Susceptiility of Candida alicans, Staphylococcus aureus, and Streptococcus mutans biofilms to photodynamic inactivation: an in vitro study. Laser Med Sci. 2011; 26:341-348. https://doi.org/10.1007/s10103-010-0852-3 PMid:21069408

Soria-Lozano P, Gilaberte Y, Paz-Cristobal MP, Pérez-Artiaga L, Lampaya-Pérez V, Aporta J, Pérez-Laguna V, García-Luque I, Revillo MJ, Rezusta A. In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC Microbiol. 2015; 15:187. https://doi.org/10.1186/s12866-015-0524-3 PMid:26410025 PMCid:PMC4584123

Araújo P, Teixeira K, Lanza L, Cortes M, PolettoIn L. In vitro lethal photosensitization of S. mutans using methylene blue and toluidine blue o as photosensitizers. Acta odontol. latinoam. 2009; 22(2):93-7. PMid:19839484

Neves P, Lima L, Rodrigues F, Leitao T, Ribeiro C. Clinical effect of photodynamic therapy on primary carious dentin after partial caries removal. Braz. Oral Res. 2016; 30(1):e47. https://doi.org/10.1590/1807-3107BOR-2016.vol30.0047 PMid:27223131

Kim JS, Kuk E, Yu KN Kim JH, Park SJ, Lee HJ, Kim SH, Park YK, Park YH, Hwang CY, Kim YK, Lee YS, Jeong DH, Cho MH. Antimicrobial effects of silver nanoparticles. Nanomedicine. 2007; 3:95–101. https://doi.org/10.1016/j.nano.2006.12.001 PMid:17379174

Prabhu S, Poulose EK. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett. 2012; 2:1–10. https://doi.org/10.1186/2228-5326-2-32

Rolim JP, De-Melo MA, Guedes SF, Albuquerque-Filho FB, De Souza JR, Nogueira NA, Zanin IC, Rodrigues LK. The antimicrobial activity of photodynamic therapy against Streptococcus mutans using different photosensitizers. J Photochem Photobiol B. 2012; 106: 40–46. https://doi.org/10.1016/j.jphotobiol.2011.10.001 PMid:22070899

Yamanaka M, Hara K, Kudo J. Bactericidal actions of a silver ion solution on Escherichia coli, studied by energy-filtering transmission electron microscopy and proteomic analysis. Appl Environ Microbiol. 2005; 71:7589–93. https://doi.org/10.1128/AEM.71.11.7589-7593.2005 PMid:16269810 PMCid:PMC1287701

Espinosa-Cristóbal L, Martínez-Casta-ón G, Martínez-Martínez R, Loyola-Rodríguez J, Pati-o-Marín N, Reyes-Macías J, Facundo Ruiz. Antibacterial effect of silver nanoparticles against Streptococcus mutans. Materials Letters. 2009; 63:2603–2606. https://doi.org/10.1016/j.matlet.2009.09.018

Cavalcanti YW, Bertolini MM, da Silva WJ, del-Bel-Cury AA, Tenuta LMA, Cury JA. A three-species biofilm model for the evaluation of enamel and dentin demineralization. Biofouling. 2014; 30(5):579–588. https://doi.org/10.1080/08927014.2014.905547 PMid:24730462

Giacaman RA, Contzen MP, Yuri JA, Munoz-Sandoval C. Anticaries effect of an antioxidant-rich apple concentrate on enamel in an experimental biofilm demineralization model. J Appl Microbiol. 2014; 117(3):846–853. https://doi.org/10.1111/jam.12561 PMid:24903333

Zhao W, Xie Q, Bedran-Russo AK, Pan S, Ling J, Wu CD. The preventive effect of grape seed extract on artificial enamel caries progression in a microbial biofilm-induced caries model. J Dent. 2014; 42(8):1010–1018. https://doi.org/10.1016/j.jdent.2014.05.006 PMid:24863939

Filoche SK, Soma KJ, Sissons CH. Caries-related plaque microcosm biofilms developed in microplates. Oral Microbiol Immunol. 2007; 22(2):73–79. https://doi.org/10.1111/j.1399-302X.2007.00323.x PMid:17311629

Salli K, Ouwehand A. The use of in vitro model systems to study dental biofilms associated with caries: a short review. J Oral Microbiol. 2015; 7:26149. https://doi.org/10.3402/jom.v7.26149 PMid:25740099 PMCid:PMC4349908

El Halim SA. Effect of three bleaching agent on surface roughness of enamel (in-vivo study). Dentistry. 2012; 2(4):1-5. https://doi.org/10.4172/2161-1122.1000133

Published
2018-07-17
How to Cite
1.
Saafan A, Zaazou MH, Sallam MK, Mosallam O, El Danaf HA. Assessment of Photodynamic Therapy and Nanoparticles Effects on Caries Models. Open Access Maced J Med Sci [Internet]. 2018Jul.17 [cited 2020Nov.27];6(7):1289-95. Available from: https://www.id-press.eu/mjms/article/view/oamjms.2018.241
Section
D - Dental Sciences