Classification of Radiological Changes in Burst Fractures

  • Salim Åžentürk Koc Universitesi Tip Fakultesi, Neurosurgery, Istanbul
  • Ahmet Öğrenci Neurospinal Academy – Neurosurgery Kurtköy mah. Ankara Cad. 390/3, Pendik, Istanbul 34955
  • Ahmet Gürhan Gürçay TC Saglik Bakanligi Ankara Ataturk Egitim ve Arastirma Hastanesi , Neurosurgery Ankara, Ankara
  • Ahmet Atilla AbdioÄŸlu Trabzon Kanuni Egitim ve Arastirma Hastanesi, Neurosurgery, Trabzon
  • Onur Yaman Koc Universitesi Tip Fakultesi, Neurosurgery, Istanbul
  • Ali Fahir Özer Koc Universitesi Tip Fakultesi, Neurosurgery, Istanbul
Keywords: Burst fracture, Classification, Neurological deficit, Pediculolaminar junction, Secondary organ injury


AIM: Burst fractures can occur with different radiological images after high energy. We aimed to simplify radiological staging of burst fractures.

METHODS: Eighty patients whom exposed spinal trauma and had burst fracture were evaluated concerning age, sex, fracture segment, neurological deficit, secondary organ injury and radiological changes that occurred.

RESULTS: We performed a new classification in burst fractures at radiological images.

CONCLUSIONS: According to this classification system, secondary organ injury and neurological deficit can be an indicator of energy exposure. If energy is high, the clinical status will be worse. Thus, we can get an idea about the likelihood of neurological deficit and secondary organ injuries. This classification has simplified the radiological staging of burst fractures and is a classification that gives a very accurate idea about the neurological condition.


Download data is not yet available.


Metrics Loading ...

Plum Analytics Artifact Widget Block


Deng Z, Zou H, Cai L, Ping A, Wang Y, Ai Q. The retrospective analysis of posterior short-segment pedicle instrumentation without fusion for thoracolumbar burst fracture with neurological deficit. The Scientific World Journal. 2014;2014.

Fu CG, Liu GH, Song ZC. Damage control orthopaedics of thoracolumbar burst fracture complicated with severe polytrauma. Zhongguo Gu Shang. 2009; 22(7):499-500. PMid:19705707

Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S. A comprehensive classification of thoracic and lumbar injuries. Eur Spine J. 1994; 3:184-201. PMid:7866834

Vaccaro AR, Lehman RA, Hurlbert RJ, et al. A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine. 2005; 30: 2325-33. PMid:16227897

American Spinal Injury Association. International standards for neurological and functional classification of spinal cord injury. Chicago, USA, 1996.

Kemper AC, Mirza S, Mann FA. Subtle radiographic findings in an unstable pediculolaminar fracture. AJR. American journal of roentgenology. 1999; 172(5):1234. PMid:10227494

Cotterill PC, Kostuik JP, Wilson JA, Fernie GR, Maki BE. Production of a reproducible spinal burst fracture for use in biomechanical testing. J Orthop Res. 1987; 5:462–465. PMid:3625368

Cammisa FP, Eismont FJ, Green BA. Dural laceration is occurring with burst fractures and associated laminar fractures. J Bone Joint Surg. 1989; 71:1044–52. PMid:2760080

Hashimoto T, Kaneda K, Abumi K. Relationship between traumatic spinal canal stenosis and neurologic deï¬cits in thoracolumbar burst fractures. Spine. 1988; 13:1268–72. PMid:3206286

Keene JS, Wackwitz DL, Drummond DS, Breed AL. Compression-distraction instrumentation of unstable thoracolumbar fractures: anatomic results obtained with each type of injury and method of instrumentation. Spine. 1986; 11:895–902. PMid:3824067

McAfee PC, Yuan HA, Lasda NA. The unstable burst fracture. Spine. 1982; 7:365–73. PMid:7135069

Petersilge CA, Pathria MN, Emery SE, Masaryk TJ. Thoracolumbar burst fractures: evaluation with MR imaging. Radiology. 1995; 194: 49–54. PMid:7997581

Aebi M, Etter C, Kehl T, Thalgott J. Stabilization of the lower thoracic and lumbar spine with the internal spinal skeletal ï¬xation system. Indications, techniques, and ï¬rst results of treatment. Spine. 1987; 12:544–51. PMid:3660081

Silvestro C, Francaviglia N, Bragazzi R, Viale GL. Near-anatomical reduction and stabilization of burst fractures of the lower thoracic or lumbar spine. Acta Neurochir. 1992; 116:53–59. PMid:1615770

Sjostrom L, Karlstrom G, Pech P, Rauschning W. Indirect spinal canal decompression in burst fractures treated with pedicle screw instrumentation. Spine. 1996; 21:113–23. PMid:9122751

Trafton PG, Boyd Jr CA. Computed tomography of thoracic and lumbar spine injuries. J Trauma. 1984; 24:506–15.

Willen JA, Gaekwad UH, Kakulas BA. Acute burst fractures: A comparative analysis of a modern fracture classiï¬cation and pathologic ï¬ndings. ClinOrthop. 1992; 276:169–75. PMid:1537147

Hu Z, Zhou Y, Li N, Xie X. Correlations between posterior longitudinal ligament status and size of bone fragment in thoracolumbar burst fractures. International journal of clinical and experimental medicine. 2015; 8(2):2754. PMid:25932230 PMCid:PMC4402877

Dai J, Lin H, Niu S,et al. Correlation of bone fragments reposition and related parameters in thoracolumbar burst fractures patients. Int J Clin Exp Med. 2015; 8(7):11125. PMid:26379913 PMCid:PMC4565296

Herndon WA1, Galloway D. Neurologic return versus cross-sectional canal area in incomplete thoracolumbar spinal cord injuries. J Trauma.1988; 28(5):680-83.

Lee IS1, Kim HJ, Lee JS, et al. Dural tears in spinal burst fractures: predictable MR imaging findings. Am J Neuroradiol. 2009; 30(1):142-6. PMid:18768720

How to Cite
ŞentürkS, Öğrenci A, GürçayAG, Abdioğlu AA, Yaman O, Özer AF. Classification of Radiological Changes in Burst Fractures. Open Access Maced J Med Sci [Internet]. 2018Feb.14 [cited 2020Nov.25];6(2):359-63. Available from:
B - Clinical Sciences