Expression of OCT-4 and SOX-2 in Bone Marrow-Derived Human Mesenchymal Stem Cells during Osteogenic Differentiation

  • Igor Matic Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb
  • Maja Antunovic Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb
  • Sime Brkic Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb
  • Pavle Josipovic Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb
  • Katarina Caput Mihalic Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb
  • Ivan Karlak Department of Traumatology, University Hospital Sestre Milosrdnice, Zagreb
  • Alan Ivkovic Clinical Hospital Sveti Duh, Zagreb
  • Inga Marijanovic Division of Biology, Department of Molecular Biology, Faculty of Science, University of Zagreb, Zagreb
Keywords: pluripotency markers, human mesenchymal stem cells, osteodifferentiation

Abstract

AIM: Determine the levels of expression of pluripotency genes OCT-4 and SOX-2 before and after osteogenic differentiation of human mesenchymal stem cells (hMSCs).

METHODS: Human MSCs were derived from the bone marrow and differentiated into osteoblasts. The analyses were performed on days 0 and 14 of the cell culture. In vitro differentiation was evaluated due to bone markers – alkaline phosphatase (AP) activity and the messenger RNA (mRNA) expression of AP and bone sialoprotein (BSP). The OCT-4 and SOX-2 expression was evaluated at mRNA level by real-time qPCR and at protein level by immunocytochemistry.

RESULTS: In vitro cultures on day 14 showed an increase in AP activity and upregulation of AP and BSP gene expression. OCT-4 and SOX-2 in undifferentiated hMSCs on day 0 is detectable and very low compared to tumor cell lines as a positive control. Immunocytochemistry detected OCT-4 in the cell nuclei prior (day 0) and post differentiation (day 14). On the same time points, cultures were negative for SOX-2 protein.

CONCLUSION: Messenger RNA for pluripotency markers OCT-4 and SOX-2 isolated from hMSCs was less present, while OCT-4 protein was detected in cell nuclei prior and post differentiation into osteoblast lineage.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Boyer LA, Lee TI, Cole MF, et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell. 2005;122:947–56.

http://dx.doi.org/10.1016/j.cell.2005.08.020

PMid:16153702 PMCid:PMC3006442

Boiani M, Schöler HR. Regulatory networks in embryo-derived pluripotent stem cells. Nat Rev Mol Cell Biol. 2005;6:872–84.

http://dx.doi.org/10.1038/nrm1744

PMid:16227977

Reim G, Brand M. Spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development. 2002;129:917–33.

PMid:11861475

Palmieri SL, Peter W, Hess H, Schöler HR. Oct-4 transcription factor is differentially expressed in the mouse embryo during establishment of the first two extraembryonic cell lineages involved in implantation. Dev Biol. 1994;166:259–67.

http://dx.doi.org/10.1006/dbio.1994.1312

PMid:7958450

Pesce M, Schöler HR. Oct-4: gatekeeper in the beginnings of mammalian development. Stem Cells. 2001;19:271–8.

http://dx.doi.org/10.1634/stemcells.19-4-271

PMid:11463946

Kim JH, Jee MK, Lee SY, et al. Regulation of adipose tissue stromal cells behaviors by endogenic Oct4 expression control. PLoS One. 2009;4.

http://dx.doi.org/10.1371/journal.pone.0007166

Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet. 2000;24:372– 6.

http://dx.doi.org/10.1038/74199

PMid:10742100

Tai M-H, Chang C-C, Kiupel M, et al. Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis. Carcinogenesis. 2005;26:495–502.

http://dx.doi.org/10.1093/carcin/bgh321

PMid:15513931

Gidekel S, Pizov G, Bergman Y, Pikarsky E. Oct-3/4 is a dose-dependent oncogenic fate determinant. Cancer Cell. 2003;4:361–70.

http://dx.doi.org/10.1016/S1535-6108(03)00270-8

Monk M, Holding C. Human embryonic genes re-expressed in cancer cells. Oncogene. 2001;20:8085–91.

http://dx.doi.org/10.1038/sj.onc.1205088

PMid:11781821

Greco SJ, Liu K, Rameshwar P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells. Stem Cells. 2007;25:3143–54.

http://dx.doi.org/10.1634/stemcells.2007-0351

PMid:17761754

Kerkis I, Kerkis A, Dozortsev D, et al. Isolation and characterization of a population of immature dental pulp stem cells expressing OCT-4 and other embryonic stem cell markers. Cells Tissues Organs. 2006;184:105–16.

http://dx.doi.org/10.1159/000099617

PMid:17409736

Beltrami AP, Cesselli D, Bergamin N, et al. Multipotent cells can be generated in vitro from several adult human organs (heart, liver, and bone marrow). Blood. 2007;110:3438–46.

http://dx.doi.org/10.1182/blood-2006-11-055566

PMid:17525288

Lin G, Garcia M, Ning H, et al. Defining stem and progenitor cells within adipose tissue. Stem Cells Dev. 2008;17:1053–63.

http://dx.doi.org/10.1089/scd.2008.0117

PMid:18597617 PMCid:PMC2865901

Fang X, Yoon J-G, Li L, et al. The SOX2 response program in glioblastoma multiforme: an integrated ChIP-seq, expression microarray, and microRNA analysis. BMC Genomics. 2011;12:11.

http://dx.doi.org/10.1186/1471-2164-12-11

PMid:21211035 PMCid:PMC3022822

Girouard SD, Laga AC, Mihm MC, et al. SOX2 contributes to melanoma cell invasion. Laboratory Investigation. 2012:362–70.

http://dx.doi.org/10.1038/labinvest.2011.188

PMid:22184093 PMCid:PMC3887365

Liu K, Lin B, Zhao M, et al. The multiple roles for Sox2 in stem cell maintenance and tumorigenesis. Cellular Signalling. 2013. p. 1264–71.

http://dx.doi.org/10.1016/j.cellsig.2013.02.013

PMid:23416461 PMCid:PMC3871517

Masui S, Nakatake Y, Toyooka Y, et al. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol. 2007;9:625–35.

http://dx.doi.org/10.1038/ncb1589

PMid:17515932

Takahashi K, Yamanaka S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell. 2006;126:663–76.

http://dx.doi.org/10.1016/j.cell.2006.07.024

PMid:16904174

Sperger JM, Chen X, Draper JS, Antosiewicz JE, Chon CH, Jones SB, et al. Gene expression patterns in human embryonic stem cells and human pluripotent germ cell tumors. Proc Natl Acad Sci USA. 2003;100:13350–5.

http://dx.doi.org/10.1073/pnas.2235735100

PMid:14595015 PMCid:PMC263817

Lengler J, Bittner T, Münster D, Gawad AEDA, Graw J. Agonistic and antagonistic action of AP2, Msx2, Pax6, Prox1 and Six3 in the regulation of Sox2 expression. Ophthalmic Res. 2005;37:301–9.

http://dx.doi.org/10.1159/000087774

PMid:16118513

Pittenger MF. Multilineage Potential of Adult Human Mesenchymal Stem Cells. Science. 1999: 143–7.

http://dx.doi.org/10.1126/science.284.5411.143

PMid:10102814

Dezawa M, Ishikawa H, Itokazu Y, et al. Bone marrow stromal cells generate muscle cells and repair muscle degeneration. Science. 2005;309:314–7.

http://dx.doi.org/10.1126/science.1110364

PMid:16002622

Pierantozzi E, Gava B, Manini I, et al. Pluripotency regulators in human mesenchymal stem cells: expression of NANOG but not of OCT-4 and SOX-2. Stem Cells Dev. 2011;20:915–23.

http://dx.doi.org/10.1089/scd.2010.0353

PMid:20879854

Greber B, Lehrach H, Adjaye J. Silencing of core transcription factors in human EC cells highlights the importance of autocrine FGF signaling for self-renewal. BMC Dev Biol. 2007;7:46.

http://dx.doi.org/10.1186/1471-213X-7-46

PMid:17506876 PMCid:PMC1885259

Xu R-H, Sampsell-Barron TL, Gu F, et al. NANOG is a direct target of TGFbeta/activin-mediated SMAD signaling in human ESCs. Cell Stem Cell. 2008;3:196–206.

http://dx.doi.org/10.1016/j.stem.2008.07.001

PMid:18682241 PMCid:PMC2758041

Chambers I, Tomlinson SR. The transcriptional foundation of pluripotency. Development. 2009;136:2311–22.

http://dx.doi.org/10.1242/dev.024398

PMid:19542351 PMCid:PMC2729344

Lengner CJ, Welstead GG, Jaenisch R. The pluripotency regulator Oct4: a role in somatic stem cells? 2008;7(6):725-8.

Lee MW, Kim DS, Yoo KH, et al. Human bone marrow-derived mesenchymal stem cell gene expression patterns vary with culture conditions. Blood Res [Internet]. 2013;48(2):107–14.

http://dx.doi.org/10.5045/br.2013.48.2.107

PMid:23826579 PMCid:PMC3698395

Burns CE, Zon LI. Portrait of a stem cell. Dev Cell. 2002;3:612–4.

http://dx.doi.org/10.1016/S1534-5807(02)00329-5

Romanov YA, Darevskaya AN, Merzlikina NV, Buravkova LB. Mesenchymal stem cells from human bone marrow and adipose tissue: Isolation, characterization, and differentiation potentialities. Bull Exp Biol Med. 2005;140:138–43.

http://dx.doi.org/10.1007/s10517-005-0430-z

PMid:16254640

Kang Q, Sun MH, Cheng H, et al. Characterization of the distinct orthotopic bone-forming activity of 14 BMPs using recombinant adenovirus-mediated gene delivery. Gene Ther. 2004;11:1312–20.

http://dx.doi.org/10.1038/sj.gt.3302298

PMid:15269709

Jayakumar P, Di Silvio L. Osteoblasts in bone tissue engineering. Proc Inst Mech Eng H. 2010;224:1415–40.

http://dx.doi.org/10.1243/09544119JEIM821

PMid:21287829

Riekstina U, Cakstina I, Parfejevs V, et al. Embryonic stem cell marker expression pattern in human mesenchymal stem cells derived from bone marrow, adipose tissue, heart and dermis. Stem Cell Rev. 2009;5:378–86.

http://dx.doi.org/10.1007/s12015-009-9094-9

PMid:20058201

Ono M, Kajitani T, Uchida H, et al. OCT4 expression in human uterine myometrial stem/progenitor cells. Hum Reprod. 2010;25:2059–67.

http://dx.doi.org/10.1093/humrep/deq163

PMid:20576635

Arnold K, Sarkar A, Yram MA, et al. Sox2 + adult stem and progenitor cells are important for tissue regeneration and survival of mice. Cell Stem Cell. 2011;9:317–29.

http://dx.doi.org/10.1016/j.stem.2011.09.001

PMid:21982232 PMCid:PMC3538360

Ji KH, Xiong J, Hu KM, Fan LX, Liu HQ. Simultaneous expression of Oct4 and genes of three germ layers in single cell-derived multipotent adult progenitor cells. Annals of Hematology. 2008:431–8.

http://dx.doi.org/10.1007/s00277-008-0470-3

PMid:18338169 PMCid:PMC2324127

Ezeh UI, Turek PJ, Reijo Pera RA, Clark AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer. 2005;104:2255–65.

http://dx.doi.org/10.1002/cncr.21432

PMid:16228988

Santagata S, Ligon KL, Hornick JL. Embryonic stem cell transcription factor signatures in the diagnosis of primary and metastatic germ cell tumors. Am J Surg Pathol. 2007;31:836–45.

http://dx.doi.org/10.1097/PAS.0b013e31802e708a

PMid:17527070

Bu Y, Cao D. The origin of cancer stem cells. Front Biosci (Schol Ed) [Internet]. 2012;4:819–30.

http://dx.doi.org/10.2741/S302

Malik B. Cancer stem cells and resistance to chemo and radio therapy. Frontiers in Bioscience. 2012:2142.

http://dx.doi.org/10.2741/E531

Zaehres H, Lensch MW, Daheron L, et al. High-efficiency RNA interference in human embryonic stem cells. Stem Cells [Internet]. 2005;23:299–305.

http://dx.doi.org/10.1634/stemcells.2004-0252

PMid:15749924

Roche S, Richard MJ, Favrot MC. Oct-4, Rex-1, and Gata-4 expression in human MSC increase the differentiation efficiency but not hTERT expression. J Cell Biochem. 2007;101:271–80.

http://dx.doi.org/10.1002/jcb.21185

PMid:17211834

Saxe JP, Tomilin A, Schöler HR, Plath K, Huang J. Post-translational regulation of Oct4 transcriptional activity. PLoS One. 2009;4.

http://dx.doi.org/10.1371/journal.pone.0004467

Wei F, Schöler HR, Atchison ML. Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem. 2007;282:21551–60.

http://dx.doi.org/10.1074/jbc.M611041200

PMid:17525163

Liao B, Jin Y. Wwp2 mediates Oct4 ubiquitination and its own auto-ubiquitination in a dosage-dependent manner. Cell Res. 2010;20:332–44.

http://dx.doi.org/10.1038/cr.2009.136

PMid:19997087

Seo E, Basu-Roy U, Zavadil J, Basilico C, Mansukhani A. Distinct Functions of Sox2 Control Self-Renewal and Differentiation in the Osteoblast Lineage. Molecular and Cellular Biology. 2011:4593–608.

http://dx.doi.org/10.1128/MCB.05798-11

PMid:21930787 PMCid:PMC3209254

Basu-Roy U, Ambrosetti D, Favaro R, et al. The transcription factor Sox2 is required for osteoblast self-renewal. Cell Death Differ. 2010;17:1345–53.

http://dx.doi.org/10.1038/cdd.2010.57

PMid:20489730 PMCid:PMC2902624

Wang XQ, Ongkeko WM, Chen L, et al. Octamer 4 (Oct4) mediates chemotherapeutic drug resistance in liver cancer cells through a potential Oct4-AKT-ATP-binding cassette G2 pathway. Hepatology. 2010;52:528–39.

http://dx.doi.org/10.1002/hep.23692

PMid:20683952

Published
2016-01-18
How to Cite
1.
Matic I, Antunovic M, Brkic S, Josipovic P, Caput Mihalic K, Karlak I, Ivkovic A, Marijanovic I. Expression of OCT-4 and SOX-2 in Bone Marrow-Derived Human Mesenchymal Stem Cells during Osteogenic Differentiation. Open Access Maced J Med Sci [Internet]. 2016Jan.18 [cited 2020Nov.25];4(1):9-16. Available from: https://www.id-press.eu/mjms/article/view/oamjms.2016.008
Section
A - Basic Science