Identification of Active Compounds of Ethanol Extract of Citrus amblycarpa leaves by Analysis of Thin-layer Chromatography and Gas Chromatography-Mass Spectrometry as Bioinsecticide Candidates for Mosquitoes

  • Kasman Kasman Departement of Epidemiology and Biostatistic, Faculty of Public Health, Islamic University of Kalimantan, Banjarmasin, Indonesia
  • Nuning Irnawulan Ishak Department of Occupational Health Safety and Environmental Health, Faculty of Public Health, Islamic University of Kalimantan, Banjarmasin, Indonesia
  • Poedji Hastutiek Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
  • Endang Suprihati Department of Veterinary Parasitology, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
  • Anwar Mallongi Department of Environmental Health, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia
Keywords: TLC, GC-MS, Bioinsectisidal, Citrus amblycarpa, Aedes aegypt

Abstract

BACKGROUND: The use of active compounds from plants becomes an alternative to control mosquitoes nowadays and in the future because they are environmentally-friendly and do not cause health problems. Citrus amblycarpa is a local orange of South Kalimantan potential as bioinsecticidal, which commonly used for controlling mosquitoes. Therefore, research needs to be done to find out the benefits of C. amblycarpa leaves as bioinsecticidal.

AIM: The research aimed to identify active compounds contained in the extract ethanol of C. amblycarpa leaves as bioinsecticidal against mosquitoes.

RESULTS: Based on thin-layer chromatography test, there were some secondary metabolite compounds found such as terpenoids/steroids, flavonoids, polyphenols, and saponins. Gas chromatography-mass spectrometry (GC-MS) test revealed that there were ten primary components of the fraction. The components were Maragenin I (18,82%), 1,3-benzenedicarboxamide (12.28%), 2,3,8-trioxocephalotaxane (10.39%), aristolone, 2H-cyclopropa[a] naphthalene-2-one, noruns-12-ene (7.46%), palmitic acid, n-hexadecanoic acid (7.21%), stigmasterol, demecolcine (7.03%), alpha-tocopherol (5.88%), 2,4,5-trimethylphenol, pseudocumenol (4.21%), germacrene-D (3.45%), and 9-octadecenoic acid (3.36%).

CONCLUSION: These active compounds possess biological activity as bioinsecticidal. It was expected that those active compounds in C. amblycarpa leaves could be applied for controlling mosquitoes by replacing the use of resistant temephos.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

References

Tosepu R, Tantrakarnapa K, Nakhapakorn K, Worakhunpiset S. Climate variability and dengue hemorrhagic fever in Southeast Sulawesi Province, Indonesia. Environ Sci Pollut Res Int. 2018;25(15):14944-52. https://doi.org/10.1007/ s11356-018-1528-y PMid:29549613

Mapalagamage M, Handunnetti S, Premawansa G, Thillainathan S, Fernando T, Kanapathippillai K, et al. Is total serum nitrite and nitrate (NOx) level in dengue patients a potential prognostic marker of dengue hemorrhagic fever? Dis Markers. 2018;2(2):1-9. https://doi.org/10.1155/2018/5328681 PMid:30069272

Retnaningrum OT, Martini M, Raharjo M. Incidence of dengue hemorrhagic fever (DHF) in semarang coastal area: Epidemiology descriptive case and bionomic vector. Indones J Trop Infect Dis. 2019;7(6):144-9. https://doi.org/10.20473/ijtid. v7i6.10389

Harapan H, Michie A, Mudatsir M, Sasmono RT, Imrie A. Epidemiology of dengue hemorrhagic fever in Indonesia: Analysis of five decades data from the National Disease Surveillance. BMC Res Notes. 2019;12:350. https://doi. org/10.1186/s13104-019-4379-9 PMid:31221186

Ishak NI, Kasman K. The effect of climate factors for dengue hemorrhagic fever in Banjarmasin city, South Kalimantan Province, Indonesia, 2012-2016. Public Health Indones. 2018;4(3):121-8. https://doi.org/10.36685/phi.v4i3.181

Ridha MR, Sembiring W, Fadilly SS. Indikator Entomologi dan Status Resistensi Vektor Demam Berdarah Dengue (Aedes aegypti L) Terhadap Beberapa Golongan Insektisida di Kota Banjarbaru. In: Prosiding Seminar Nasional Seri No. 8; 2018. p. 128-42. https://doi.org/10.22435/vektorp.v13i2.931

Susilowati RP, Darmanto W, Aminah NS. “MORIZENA” against Aedes aegypti death. Indones J Trop Infect Dis. 2018;7(2):50-5.

Hastutiek AS, Heru PR. Permot (Passiflora foetida Linn.) leaf extracts as bioinsecticide against Aedes aegypti larvae. Southeast Asian J Trop Med Public Health. 2017;48(6):1169-74.

Anwar C, Syukur KM, Dalilah D, Salni S, Novrikasari N. The efficacy of red ginger fraction (Zingiber officinale Roscoe var. rubrum) as insecticidal Aedes aegypti. Biosci Med. 2018;2(2):31- 41. https://doi.org/10.32539/bsm.v2i2.40

Irwan A, Mustikasari K, Ariyani D. Chemical preliminary evaluation of leaves, peels, and fleshs fruit of limau kuit: local orange of south kalimantan. Sains Terap Kim. 2017;11(2):71-9. https://doi.org/10.20527/jstk.v11i2.4040

Ishak NI, Kasman K, Chandra C. Effectiveness of Lime Skin Extract (Citrus amblycarpa) as natural larvacide aedes aegypti instar III. J MKMI. 2019;15(3):302-10. https://doi.org/10.30597/ mkmi.v15i3.6533

Sastrohamidjojo H. Kromatografi. Yogyakarta: Liberty Yogyakarta; 1985.

Harborne J. Metode Fitokimia Penuntun Cara Modern Menganalisis Tumbuhan. Bandung: Penerbit ITB; 1987.

Astriani Y., Widawati M. Potential plant in indonesia as natural larvicides for aedes aegypti. SPIRAKEL. 2018;8(1):37-46. https://doi.org/10.22435/spirakel.v8i2.6166.37-46

Kartina, Agang MW, Adiwena M. Characterisation of phytochemical content of leaf extract from karamunting (Melastoma malabatchricum L.) using gas chromatography mass spectrometry (GC-MS). Biota. 2019;4(1):16-23. https:// doi.org/10.24002/biota.v4i1.2363

Perumalsamy H, Jang MJ, Kim J, Kadarkarai M, Ahn Y. Larvicidal activity and possible mode of action of four flavonoids and two fatty acids identified in Millettia pinnata seed toward three mosquito species. Parasit Vectors Biomed Cent. 2015;8:237. https://doi.org/10.1186/s13071-015-0848-8 PMid:25928224

Ghosh A. Efficacy of phytosterol as mosquito larvicide. Asian Pacific J Trop Dis. 2013;3(3):252. https://doi.org/10.1016/ s2222-1808(13)60050-x

Hidana SN. Effectiveness of lemongrass leaves (Cymbopogon nardus) extract as anti-oviposition to aedes aegypti mosquito. J Kesehat Bakti Tunas Husada. 2015;13(1):130-4. https://doi. org/10.36465/jkbth.v13i1.24

Utami IW, Cahyati WA. Potential of cambodia leaf extract (Plumeria acuminata) as insecticide against aedes aegypti mosquitoes. HIGEIA. 2017;1(1):22-8.

Gautam K, Kumar P, Poonia S. Larvicidal activity and GC-MS analysis of flavonoids of Vitex negundo and Andrographis paniculata against two vector mosquitoes Anopheles stephensi and Aedes aegypti. J Vector Borne Dis. 2013;50(3):171-8. PMid:24220075

Hylands PJ, Salama AM. Maragenin I, II, and III, new pentacyclic triteroenes from Marah macrocarpus. Tetrahedron. 1978;35:417-20. https://doi.org/10.1016/0040-4020(79)80081-2

Itokawa H, Nakajima H, Ikuta A, Iitaka Y. Two triterpenes from the flowers of Camellia japonica. Phytochemistry. 1981;20(11):2539- 42. https://doi.org/10.1016/0031-9422(81)83089-0

Aref HL, Aouni M, Chaumon JP, Said K, Fekih A, Génétique L De. In vitro antiviral activities of Jrani caprifig latex and its related terpenes. Afr J Microbiol Res. 2011;5(32):5812-8. https://doi. org/10.5897/ajmr10.104

El-tantawy ME, Haggag EG, Kamal AM, Lithy RM. Phytochemical and biological evaluation of banana, cantaloupe and guava waste parts. J Pharm Res. 2016;10(5):308-18.

Aboobucker SI, Suza WP. Why do plants convert sitosterol to stigmasterol ? Front Plant Sci. 2019;10:354. https://doi. org/10.3389/fpls.2019.00354 PMid:30984220

Okonkwo CO, Onyeji CM. Insecticidal potentials and chemical composition of essential oils from the leaves of Phyllanthus amarus and Stachytarpheta cayennensis in Nigeria. Int J Biochem Res Rev. 2018;22(3):1-16. https://doi.org/10.9734/ ijbcrr/2018/42315

Ifeanyi OE. A review on palm oil supplemented diet and enzymatic antioxidants in aging. Int J Curr Res Med Sci. 2018;4(4):43-52.

Wartono MW, Ainurofiq MI. Chemical contituent of the essential oils from the fruits of Piper betle L, Piper cubeba L, and Piper retrofractum Vahl. Molekul. 2014;9(1):1-12. https://doi. org/10.20884/1.jm.2014.9.1.143

Ishak H, Mallongi A, Wahid I, Bachtiar I. Spatiotemporal factors related to dengue hemorrhagic fever in Makassar city, 2010- 2014. Indian J Public Health Res Dev. 2018;9(6):452. https:// doi.org/10.5958/0976-5506.2018.00596.x

Muhith A, Winarti E, Perdana SS, Haryuni S, Rahayu KI, Mallongi A. Internal locus of control as a driving factor of early detaction behavior of servical cancer by inspection visual of acetic acid method. Open Access Maced J Med Sci. 2020;8(E):113-6. https://doi.org/10.3889/oamjms.2020.4341

Mallongi A, Birawida AB, Astuti RD, Saleh M. Effect of lead and cadmium to blood pressure on communities along coastal areas of Makassar, Indonesia. Enferm Clín. 2020;30(4):313-7. https:// doi.org/10.1016/j.enfcli.2020.03.001

Darmawan UW, Ismanto A. Mortality of yellow butterfly (Eurema sp.) larvae due to pond apple (Annona glabra L.) seed extract application. J Penelit Hutan Tanam. 2016;13(2):157-64. https:// doi.org/10.20886/jpht.2016.13.2.157-164

Published
2020-09-20
How to Cite
1.
Kasman K, Ishak NI, Hastutiek P, Suprihati E, Mallongi A. Identification of Active Compounds of Ethanol Extract of Citrus amblycarpa leaves by Analysis of Thin-layer Chromatography and Gas Chromatography-Mass Spectrometry as Bioinsecticide Candidates for Mosquitoes. Open Access Maced J Med Sci [Internet]. 2020Sep.20 [cited 2020Oct.26];8(T2):1-. Available from: https://www.id-press.eu/mjms/article/view/5207