Functional Outcome Following Synthetic Vertebral Body Implantation in the Management of Spinal Disorders

  • Moneer K. Faraj Department of Neurosurgery, College of Medicine, University of Baghdad, Baghdad, Iraq
  • Bassam Mahmood Flamerz  Arkawazi Department of Neurosurgery, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
  • Hazim Moojid Abbas Department of Neurosurgery, College of Medicine, University of Karbala, Karbala, Iraq
  • Zaid Al-Attar Department of Pharmacology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq
Keywords: synthetic vertebral body, implantation, spinal fractures, spinal tuberculosis, spinal tumors

Abstract

OBJECTIVE: Synthetic vertebral body replacement has been widely used recently to treat different spinal conditions affecting the anterior column. They arrange from trauma, infections, and even tumor conditions. In this study, we assess the functional outcome of this modality in different spinal conditions.

PATIENTS AND METHODS: Thirty-six cases operated from October 2010 to December 2017. Twelve patients had spinal type A3 fractures, 11 cases with spinal tuberculosis (TB), and 13 cases with spinal tumors. They were followed clinically for a mean period of 2.4 years.

RESULTS: All the cases were approached anteriorly. Seven cases had a post-operative infection. No neurological worsening reported. We had dramatic neurological improvement in all spinal TB cases. Mortality recorded in only 4 cases with metastatic spinal tumor during the mean period of follow-up. Karnofsky performance status scale showed statistically significant change for spinal TB, and tumor cases during the follow-up period, but there was no significant change in cases of spinal type A3 fractures.

CONCLUSION: The positive outcome of this surgery makes it recommended for properly selected patients, especially with spinal TB and tumors.

Downloads

Download data is not yet available.

Metrics

Metrics Loading ...

Plum Analytics Artifact Widget Block

Author Biography

Hazim Moojid Abbas, Department of Neurosurgery, College of Medicine, University of Karbala, Karbala, Iraq

 

References

Holdsworth FW. Fractures and dislocations of the lower thoracic and lumbar spines, with and without neurological involvement. Curr Pract Orthop Surg. 1964;23:61-83. PMid:14282216

Mummaneni PV, Rodts GE Jr. The mini-open transforaminal lumbar interbody fusion. Neurosurgery. 2005;57 Suppl 4:256- 61. https://doi.org/10.1227/01.neu.0000176408.95304.f3 PMid:16234672

Albee FH. Transplantation of a portion of the tibia into the spine for pott’s disease: A preliminary report 1911. Clin Orthop Relat Res. 2007;460:14-6. https://doi.org/10.1097/blo.0b013e3180686a0f PMid:17620806

The classic: The original paper appeared in the New York medical journal 93:1013, 1911. I. An operation for progressive spinal deformities: A preliminary report of three cases from the service of the orthopaedic hospital. Clin Orthop Relat Res. 1964;35:4-8. PMid:4874801

Burns BH. An operation for spondylolisthesis. Lancet. 1933;221:1233.

Smith GW, Robinson RA. The treatment of certain cervical-spine disorders by anterior removal of the intervertebral disc and interbody fusion. J Bone Joint Surg Am. 1958;40-A(3):607- 24. https://doi.org/10.2106/00004623-195840030-00009 PMid:13539086

Tsantrizos A, Andreou A, Aebi M, Steffen T. Biomechanical stability of five stand-alone anterior lumbar interbody fusion constructs. Eur Spine J. 2000;9(1):14-22. https://doi. org/10.1007/s005860050003 PMid:10766072

Tsantrizos A, Baramki HG, Zeidman S, Steffen T. Segmental stability and compressive strength of posterior lumbar interbody fusion implants. Spine (Phila Pa 1976). 2000;25(15):1899-907. https://doi.org/10.1097/00007632-200008010-00007 PMid:10908932

Epari DR, Kandziora F, Duda GN. Stress shielding in box and cylinder cervical interbody fusion cage designs. Spine (Phila Pa 1976). 2005;30(8):908-14. https://doi.org/10.1097/01. brs.0000158971.74152.b6 PMid:15834335

Jost B, Cripton PA, Lund T, Oxland TR, Lippuner K, Jaeger P, et al. Compressive strength of interbody cages in the lumbar spine: The effect of cage shape, posterior instrumentation and bone density. Eur Spine J. 1998;7(2):132-41. https://doi. org/10.1007/s005860050043 PMid:9629937

Oxland TR, Grant JP, Dvorak MF, Fisher CG. Effects of endplate removal on the structural properties of the lower lumbar vertebral bodies. Spine (Phila Pa 1976). 2003;28(8):771-7. https://doi. org/10.1097/01.brs.0000060259.94427.11 PMid:12698119

Salas N, Prébet R, Guenoun B, Gayet LE, Pries P. Vertebral body cage use in thoracolumbar fractures: Outcomes in a prospective series of 23 cases at 2 years’ follow-up. Orthop Traumatol Surg Res. 2011;97(6):602-7. https://doi.org/10.1016/j.otsr.2011.05.003 PMid:21862433

Nibu K, Panjabi MM, Oxland T, Cholewicki J. Multidirectional stabilizing potential of BAK interbody spinal fusion system for anterior surgery. J Spinal Disord. 1997;10(4):357-62. https://doi. org/10.1097/00002517-199708000-00012 PMid:9278922

Arand M, Wilke HJ, Schultheiss M, Hartwig E, Kinzl L, Claes L. Comparative stability of the “internal fixator†and the “universal spine system†and the effect of crosslinking transfixating systems. A biomechanical in vitro study. Biomed Tech (Berl). 2000;45(11):311-6. https://doi.org/10.1515/ bmte.2000.45.11.311 PMid:11155532

McLain RF, Sparling E, Benson DR. Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint Surg Am. 1993;75(2):162-7. https://doi.org/10.2106/00004623-199302000-00002 PMid:8423176

Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M. Effect of constrained posterior screw and rod systems for primary stability: Biomechanical in vitro comparison of various instrumentations in a single-level corpectomy model. Eur Spine J. 2005;14(4):372- 80. https://doi.org/10.1007/s00586-004-0763-8 PMid:15248055

Raslan F, Koehler S, Berg F, Rueckriegel S, Ernestus RI, Meinhardt M, et al. Vertebral body replacement with PEEK-cages after anterior corpectomy in multilevel cervical spinal stenosis: A clinical and radiological evaluation. Arch Orthop Trauma Surg. 2014;134(5):611-8. https://doi.org/10.1007/ s00402-014-1972-1 PMid:24676649

Reinhold M, Knop C, Beisse R, Audigé L, Kandziora F, Pizanis A, et al. Operative treatment of 733 patients with acute thoracolumbar spinal injuries: Comprehensive results from the second, prospective, internet-based multicenter study of the Spine study group of the German association of trauma surgery. Eur Spine J. 2010;19(10):1657-76. https://doi.org/10.1016/j. spinee.2010.11.026

Mak KC, Cheung KM. Surgical treatment of acute TB spondylitis: Indications and outcomes. Eur Spine J. 2013;22 Suppl 4:603- 11. https://doi.org/10.1007/s00586-012-2455-0 PMid:22895736

Jain AK, Kumar J. Tuberculosis of spine: Neurological deficit. Eur Spine J. 2013;22 Suppl 4:624-33. https://doi.org/10.1007/ s00586-012-2335-7 PMid:22565802

Liu J, Wan L, Long X, Huang S, Dai M, Liu Z. Efficacy and safety of posterior versus combined posterior and anterior approach for the treatment of spinal tuberculosis: A meta-analysis. World Neurosurg. 2015;83(3):1157-65. https://doi.org/10.1016/j. wneu.2015.01.041 PMid:25698521

Trecarichi EM, Di Meco E, Mazzotta V, Fantoni M. Tuberculous spondylodiscitis: Epidemiology, clinical features, treatment, and outcome. Eur Rev Med Pharmacol Sci. 2012;16 Suppl 2:58-72. https://doi.org/10.1016/j.spinee.2012.07.015 PMid:22655484

Yang Q, Li JM, Yang ZP, Li X, Li ZF, Yan J. Treatment of thoracolumbar tumors with total en bloc spondylectomy and the results of spinal stability reconstruction. Zhonghua Zhong Liu Za Zhi. 2013;35(3):225-30. PMid:23880006

Waschke A, Walter J, Duenisch P, Kalff R, Ewald C. Anterior cervical intercorporal fusion in patients with osteoporotic or tumorous fractures using a cement augmented cervical plate system: First results of a prospective single-center study. J Spinal Disord Tech. 2013;26(3):E112-7. https://doi. org/10.1097/bsd.0b013e3182764b37 PMid:23073150

Viswanathan A, Abd-El-Barr MM, Doppenberg E, Suki D, Gokaslan Z, Mendel E, et al. Initial experience with the use of an expandable titanium cage as a vertebral body replacement in patients with tumors of the spinal column: A report of 95 patients. Eur Spine J. 2012;21(1):84-92. https://doi.org/10.1007/ s00586-011-1882-7 PMid:2168163

Published
2020-03-10
How to Cite
1.
Faraj MK,  Arkawazi BMF, Abbas HM, Al-Attar Z. Functional Outcome Following Synthetic Vertebral Body Implantation in the Management of Spinal Disorders. Open Access Maced J Med Sci [Internet]. 2020Mar.10 [cited 2020Oct.31];8(B):76-0. Available from: https://www.id-press.eu/mjms/article/view/3662