Toxicity, Deficiency and Dysmetabolism of Trace Elements in Ghanaian Clinically Stable Schizophrenics

George A. Asare*, Ruth Tetteh, Elsie Amedonu, Bernice Asiedu, Derek Doku

University of Ghana School of Allied Health Sciences (SAHS), PO Box KB 143, Korle Bu, Ghana

Abstract

AIM: The purpose of the study was to determine the levels of Copper (Cu), selenium (Se), Zinc (Zn), Lead (Pb) and Lithium (Li) in patients in Accra and Pantang Psychiatric Hospitals in Ghana since no data exist.

SUBJECTS AND METHODS: Simple random sampling of age-matched subjects was used to recruit 81 schizophrenics and 25 mentally healthy controls in 2012. Serum levels of Cu, Se, Zn, Pb and Li were determined by flame atomic absorption spectroscopy (FAAS).

RESULTS: Mean levels were as follows: Cu 766 ± 250 µg/L and Cu 855 ± 270 µg/L (p = 0.168). Se 149 ± 72 µg/L and Se 108 ± 61 µg/L (p=0.009). Zn 702 ± 438 µg/L and Zn 1007 ± 593 µg/L (p = 0.028). Pb 1.38 ± 0.05 µg/L and Pb 0.10 ± 0.05 µg/L (p = 0.000). Li levels for the test group (Li) was 4077 ± 2567 µg/L, whereas that of the controls was undetectable < 0.02 µg/L. Se, Pb and Li levels were significantly higher in schizophrenic patients compared to controls. While Zn and Cu levels were lower in the same group.

CONCLUSION: Trace elements dysmetabolism exist among Ghanaian schizophrenics and monitoring is essential to avoid the adverse effects of metal overload or deficiency.

Introduction

In 2001, 450 million people worldwide suffered from some form of mental disorder or brain condition [1]. Of the 21.6 million people living in Ghana, 650,000 were reported suffering from severe mental disorders and a further 2,166,000 from moderate to mild mental disorders in 2007 (WHO, 2007) [2]. Globally, the most frequent disorders are schizophrenia, anxiety disorders, depression, somatoform and substance abuse disorders [3].

Traditional prevalence or “core,” is studies-generated estimates based on the population residing within a defined catchment [4]. The prevalence estimates would therefore differ within lifetime, period, and point prevalence [4, 5]. Furthermore, in developing countries the proportion of cases with acute onset schizophrenia was twice as high as in developed countries [5]. This could be an underestimation [6].

Schizophrenia is characterized by symptoms that may include delusions, hallucinations, catatonia, negative symptoms, and disorganized speech or behavior. Genetic pre-disposition, pregnancy and its complications are said to be some of the risk factors, while viral infections and subsequent autoimmune reactions are causative factors [7].

Trace elements (TE) are suspected to be causative agents in the development of schizophrenia although the mechanism is poorly understood [8]. Cu, a component of several enzymes linked to dopamine synthesis, may play a role in schizophrenia by exacerbating or perpetuating dopaminergic dysregulation. Furthermore, it is suggested that ceruloplasmin elevation in schizophrenia is specific, and not simply an elevation of plasma copper-containing oxidative enzymes [9]. Abnormalities in Cu metabolism have been demonstrated in schizophrenics [10, 11]. This link is attributed to several metalloenzymes associated with dopamine...

Clinical Science

Subjects and Methods

Simple random sampling of age-matched subjects was used to recruit 81 schizophrenics and 25 mentally healthy controls in 2012. Serum levels of Cu, Se, Zn, Pb and Li were determined by flame atomic absorption spectroscopy (FAAS).

Results

Mean levels were as follows: Cu 766 ± 250 µg/L and Cu 855 ± 270 µg/L (p = 0.168). Se 149 ± 72 µg/L and Se 108 ± 61 µg/L (p = 0.009). Zn 702 ± 438 µg/L and Zn 1007 ± 593 µg/L (p = 0.028). Pb 1.38 ± 0.05 µg/L and Pb 0.10 ± 0.05 µg/L (p = 0.000). Li levels for the test group (Li) was 4077 ± 2567 µg/L, whereas that of the controls was undetectable < 0.02 µg/L.

Conclusion

Trace elements dysmetabolism exist among Ghanaian schizophrenics and monitoring is essential to avoid the adverse effects of metal overload or deficiency.
synthesis and regulation [12]. Dopamine and other catecholamines act as important hormones and neurotransmitters of the central and peripheral nervous system and have functions in the brain that control emotions [13, 14] and cognition [15].

Se is an integral component of glutathione peroxidase (GPx) which protects against reactive oxygen species (ROS). Selenoprotein R and thioredoxin, another selenoprotein, play similar protective roles [16]. Because oxidative stress increases DNA damage, Se deficiency could result in a higher mutation rate, increasing the likelihood that the sequence of a schizophrenia-related genetic region will be altered [17-18].

Zinc deficiency in the latter part of gestation impair fetal growth, brain size, total brain cell count, and the period of macroneuronal proliferation [19-20] and neurotransmitter functions. One explanation is attributed to the failure of thymidine incorporation into brain DNA, a decreased rate of protein synthesis and a smaller hippocampus [21]. Low and normal serum zinc levels have been demonstrated in studies with Bangladeshi and Turkish schizophrenics, respectively [11, 22].

Lead (Pb2+) is a neurotoxicant present in the environment and capable of producing biochemical, anatomical, and neurological changes that altogether produce behavioural changes in human development and the manifestation of schizophrenia later in life. Pb exposure in the course of development manifests in expressions of increased spontaneous activity, decreased social interaction, and learning deficits presents also in schizophrenics [23].

Lead is a potent antagonist of the N-methyl-d-aspartate (NMDA) receptor (NMDAR). It is the reduced expression of NMDAR that is ideated to be associated with the pathophysiology of the disease [24]. Furthermore, reduced dentate gyrus (DG) neurogenesis has been demonstrated in an animal model using phencyclidine which is an NMDAR antagonist [25].

The biochemical mechanisms of action of Li appear to be extraordinarily complex, multifactorial and strongly intercorrelated with the functions of other elements, drugs, enzymes, hormones, vitamins, growth and transforming factors [26]. Rats on a Li-deficient diet demonstrated suppressed liver-press avoidance behavior [27]. Furthermore, rats on a Li-deficient diet exhibited diminished wheel-running activity, decreased response to handling and lower aggression in social interactions [28]. Evidence linking low Li intake with altered behavior and aggressiveness in humans has been reported [29]. Genetic factors have also been implicated in the metabolism of Li. The precise therapeutic mechanism of Li remains unknown, but may involve the circadian clock. Molecular components of the circadian clock are known to be Li sensitive [30-34]. Li also inhibits glycogen synthase kinase 3β (GSK3β) [33], which in turn regulates protein turnover and stability in the clock network by phosphorylating target proteins, thereby modulating circadian rhythms [34].

The aim of the study therefore was to determine deficiency, toxicity or dysmetabolism of Cu, Se, Zn, Pb and Li in Ghanaian schizophrenic patients in Accra since no such data exist.

Subjects and Method

This was a case-control study. Ethics approval was obtained from the Ghana Health Service (GHS-ERC: 16/05/12) and the University of Ghana School of Allied Health Sciences (SAHS-ET./10285645/AA/26A/2012-2013). A total of 81 clinically diagnosed psychiatric patients made up of 42 males and 39 females, from the Pantang Hospital (Accra) and 25 apparently mentally healthy age-matched and sex-matched controls (13 males and 12 females) were recruited for the study in July 2013. Simple random sampling was used to recruit subjects. Psychiatric patients should have been on admission for not less than five (5) years.

Treatment of Glassware

All glassware and tubes were soaked in 10% (w/v) HNO\textsubscript{3} (Fluka, Germany) overnight and then rinsed with deionized water.

Digestion Protocol for Sample

Digestion of samples was done according to standard trace element analysis protocols using milestone microwave labstation ETHOS 900 (INSTR: MLS-1200 MEGA) programme (Table 1).

Table 1: Microwave digestion programme.

<table>
<thead>
<tr>
<th>Step</th>
<th>Time</th>
<th>Power</th>
<th>Pressure</th>
<th>Temp °C</th>
<th>Temp °C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>00:02:00</td>
<td>250</td>
<td>100</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>2</td>
<td>00:02:00</td>
<td>0</td>
<td>100</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>00:06:00</td>
<td>250</td>
<td>100</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>4</td>
<td>00:05:00</td>
<td>400</td>
<td>100</td>
<td>400</td>
<td>500</td>
</tr>
<tr>
<td>5</td>
<td>00:05:00</td>
<td>650</td>
<td>100</td>
<td>400</td>
<td>500</td>
</tr>
</tbody>
</table>

[Digestion Pr (Milestone Acid Digestion Cookbook update, 1996)]

After cooling, the digestate was then transferred into a volumetric flask and diluted to 20 mL with deionized water. The diluted digestate was assayed for the level of Cu, Se, Zn, Pb and Li using VARIAN AA 240FS-Atomic Absorption Spectrometer (Kungsbacka, Sweden) along with standards of high purity metals from Teknolab AS (Kungsbacka, Sweden) and reference material SeronormTM Trace Elements Serum L-1, L-2 (Billingstad, Norway) under conditions in Table 2. Blank samples were also digested and analyzed along with the samples.
Quality Assurance and Control Measures

The method detection limit was calculated as the mean of the blank concentration and three times the standard deviation. Values below detection limit of the instrument were replaced by the method detection limit divided by the square root of two. Control samples and standards were measured. Linearity was assessed by the calibration curve of all the elements measured. Replicate measurement for each sample was taken to ensure precision.

Statistical Analysis

The statistical analyses of the data was done using SPSS (Statistical Package for Social Sciences) version 16.0. Means ± standard deviation were determined for quantitative variables. Chi-square was used for categorial data and independent t-test for demographic data. Comparison of Cu, Se and Zn levels between the psychiatric patients and the control group were performed with unpaired t-test. Abnormally distributed data (Pb) was analyzed with Wilcoxon-Mann-Whitney test. Pearson’s correlation was used to test the relationship between the trace elements, gender and age. P-values ≤ 0.05 were considered statistically significant.

Results

Demographic Data

A total of 81 clinically diagnosed psychiatric patients (20-57 years), made up of 42 males (51.2%) and 39 females (48.1%), and 25 apparently mentally healthy controls (13 males and 12 females) (23-51 yrs) were recruited for the study. The mean age was 32.32 ± 0.84 yrs for cases and 33.64 ± 1.64 years for controls. Cases were found to be on haloperidol (0.5 mg – 3 mg).

Trace Elements Concentrations

The mean Cu, Se, Zn and Pb levels for the test and control groups were 766 ± 250 µg/L, 149 ± 72 µg/L, 702 ± 438 µg/L, 1.38 ± 0.05 µg/L and 855 ± 270 µg/L, 108 ± 61 µg/L, 1007 ± 593 and 0.10 ± 0.05 µg/L, respectively. Graphical representations of Cu, Se, Zn, Pb and Li concentrations respectively. Graphical representations of Cu, Se, Zn, Pb and Li concentrations are shown in Figure 1, 2, 3, 4 and 5, respectively. Statistical differences found between the psychiatric patients and the controls for the elements Cu, Se, Zn and Pb were p = 0.168, p = 0.009, p = 0.028 and p = 0.001, respectively (Table 3).

Li levels could be detected in only 16 samples of the test group, giving a mean value of 4077 ± 2567 µg/L. The controls were also below the detection limit of the equipment (< 0.02 µg/L). Therefore, only descriptive statistics was done for Li (Table 3). Values that could not be detected by the FAAS were replaced with the method detection limit (MDL) which is:

$$MDL = \text{Mean of Blank Concentration} \times 3 \times \text{SD}$$

Female values were higher in all trace elements except for Cu. However, for the control group, copper was higher in males (Table 4). Furthermore, females had very high Se (181 ± 82 µg/L) compared to males (124 ± 52 µg/L) (p=0.05) and low Zn (639 ± 439 µg/L) compared to females (774 ± 433 µg/L) (p>0.05) (Table 4). There was no correlation between the levels of trace elements and the age or gender of the participants. A positive correlation existed between Li and Pb (p=0.023) (Table 4).

![Figure 1: Different levels of copper (Cu) in the subjects. The test group showed significantly higher Cu levels than the controls.](https://example.com/f1.png)

<table>
<thead>
<tr>
<th>Table 2: Analytical conditions of elements.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Element</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>Se</td>
</tr>
<tr>
<td>Pb</td>
</tr>
<tr>
<td>Cu</td>
</tr>
<tr>
<td>Li</td>
</tr>
</tbody>
</table>

(VARIAN, 1989)

<table>
<thead>
<tr>
<th>Table 3: The levels of trace elements of Schizophrenic patients (cases) and controls.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controls</td>
</tr>
<tr>
<td>----------</td>
</tr>
<tr>
<td>Copper (µg/L)*</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>Zinc (µg/L)*</td>
</tr>
<tr>
<td>Lead (µg/L)*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 4: The levels of trace elements in Psychiatric patients and controls according to gender.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cases</td>
</tr>
<tr>
<td>Cu (µg/L)</td>
</tr>
<tr>
<td>Se (µg/L)</td>
</tr>
<tr>
<td>Zn (µg/L)</td>
</tr>
<tr>
<td>Pb (µg/L)</td>
</tr>
<tr>
<td>Li (µg/L)</td>
</tr>
</tbody>
</table>

* p ≤ 0.05; BDL = Below Detection Limit

Discussion

Mean Cu level of the Case group was 766 \(\mu \text{g/L} \) and the control group was 855 \(\mu \text{g/L} \). Values obtained for the Case group were statistically insignificant compared to the control group. Similarly, in the study of Necifor et al. [35] no significant Cu differences were observed between cases and controls. On the contrary, the mean value of Cu for schizophrenic cases was 720 \(\mu \text{g/L} \) while that of the Control group was 590 \(\mu \text{g/L} \) in another study. Differences were statistically significant [9]. Yanik et al. [11] also reported of similar values; 980 \(\mu \text{g/L} \) (Cases) and 760 \(\mu \text{g/L} \) (control group) (p<0.05). However, higher values of 1174 \(\mu \text{g/L} \) for Schizophrenic cases and 1056 \(\mu \text{g/L} \) for controls with differences that were statistically significant have been reported. Altered levels of trace elements in schizophrenic patients may be a consequence of antipsychotic treatment [10].

Normal brain functioning depends on the role of the Cu-containing enzyme dopamine \(\beta \)-hydroxylase converting dopamine into norepinephrine. Other enzymes such as lysyl oxidase (responsible for collagen synthesis) or monoamine oxidase A and B (the enzyme that eliminates dopamine) all contain copper. Therefore diminished copper impair these functions. On the contrary excess Cu will also reduce Zn-thioprotein and CuZnSOD, and other enzymes required for serotonin secretion as a result of competitive absorption with Zn, resulting in diminished Zn absorption. These aforementioned antioxidants are relevant in the maintenance of Cu-Zn homeostasis and failure to regulate excess Cu will lead to oxidative stress and damage. Dysmetabolism of these metals as well as disturbances of the dopamine/norepinephrin pathway have been implicated in schizophrenia [36].

Se was 149 \(\mu \text{g/L} \) (cases) and 108 \(\mu \text{g/L} \) (control). Thus, Se was higher in the Schizophrenic group above the reference interval and statistically significant when compared to the control group (p=0.001). The mean value obtained for the control group was similar to that obtained in a previous study (123 \(\mu \text{g/L} \)) [37]. Significantly similar higher Se levels in schizophrenics were reported by Kharb et al. [38]. In that study Se levels of cases and controls were 134 \(\mu \text{g/L} \) and 101 \(\mu \text{g/L} \), respectively.
reported of a higher Se level in Schizophrenics (71.65 μg/L) compared to Controls (69.65 μg/L). Differences however, were insignificant. Low blood Se concentrations in schizophrenic patients on clozapine have been reported; 101 μg/L (cases) versus 116 μg/L (control), with differences being significant [39]. That study however, could not attribute the low Se to clozapine.

Some authors have pointed out that the geography of schizophrenia may have possible links with Se and calcium deficiencies [40, 41]. However, it is unknown whether schizophrenics display selenium deficiency prior to diagnosis. Tada et al. [42] for example, discovered elevated selenium in the hair of male but not female patients. In contrast, Aletsen et al. [43] found no difference between the levels of selenium in the serum and blood of Norwegian schizophrenics and controls.

In this study, the mean Zn level was 1007 μg/L for the control group compared to 702 μg/L for the case group. Similar low Zn level was obtained in the schizophrenic group (600 μg/L) in another study [35] compared to 890 μg/L for the control group. In that study differences were significant and treatment raised the Zn levels appreciably. Zn plays a very complex role in the brain and Zn deficiency is postulated in the pathogenesis of schizophrenia [44]. Pfeiffer and Illier [45] showed a lower plasma Zn level coupled with excess Cu in schizophrenic patients and Zn loss in the hippocampus of schizophrenic patients has also been demonstrated [46]. On the contrary, another study did not observe any significant difference between Zn levels of cases and controls [11]. In a similar study, serum Zn was lower among schizophrenic criminals compared to schizophrenic non-criminals (680 μg/L and 810 μg/L, respectively) with significant differences [47]. Thus, low serum Zn in major depression is a sensitive marker of treatment resistance and of the immune/inflammatory response in mental illness [48]. Furthermore, Zn deficiency exacerbates loss in blood-brain barrier integrity induced by hyperoxia [49].

Pb levels in the case group and control group were 1.38 μg/L and 0.10 μg/L, respectively. Statistically, differences were significant (p = 0.001). Furthermore, case 49 (Figure 4), demonstrated very high Pb levels (12 μg/L), with corresponding low Cu and Se values (Figure 1 and 2, respectively). Prenatal Pb exposure and schizophrenia has been argued [50, 51]. The possible neurobiological connection with Pb exposure could be due to the fact that N-methyl-d-aspartate receptor (NMDAR) may be affected by the antagonistic effect of Pb on NMDA thereby reducing the function of NMDAR which is involved in the pathophysiology of the disease [52]. Generally, exposure to such insults from the environment and damage or alteration to the developing central nervous system may be associated with schizophrenia and other mental disorders [53-55].

Li levels in this study were below the detectable limit in all control subjects and majority of the cases. However, very high Li observed in case 60 (Figure 5) corresponded to a very low Se level (Figure 2). Much as Li may act as mood stabilizer, information on its efficacy is inconsistent [56]. Adjunctive Li and anticonvulsants for the treatment of schizophrenia seem to lack the necessary evidence [57]. The dearth of Li levels of schizophrenic patients is also problematic.

In conclusion, Se, Pb and Li levels were significantly higher in schizophrenic patients compared to controls. Zn and Cu levels were significantly lower in the cases than the controls. Female Se levels were extremely high approaching toxic levels while male Zn levels were extremely low approaching deficiency levels. TE dysmetabolism exist among schizophrenics and monitoring of TE is essential to avoid the adverse effects of metal deficiency and/or overload in tandem with mental disease. To the best of our knowledge this data is the first on schizophrenics and trace elements in Ghana.

References

15. Assadi SM, Yucel M, Pantelis C. Dopamine modulates neural...

