Introduction

Depression is one of the most common chronic psychological disorders presenting around the world [1]. Depression presents with many interpersonal and social problems. Some of the signs and symptoms are changes in sleep pattern, negative thoughts, and loss of interest in daily activities [2]. This disorder leads to functional impairment and in chronic cases can cause cardiovascular complications such as myocardial infarction and stroke. The most important complication due to this disease is suicide. The main cause of depression is mainly due to low levels of endogenous dopamine and serotonin [2]. Endocrinological factors along with abnormality of circadian rhythm are some of the other reasons for this disorder [3]. Treatment for depression includes many prescription drugs. The main group of drugs includes TCAs (tricyclic antidepressants), SSRIs (selective serotonin reuptake inhibitors), and NARIs (non-adrenaline reuptake inhibitors). Patient compliance is low as adverse effects are common and are basis of discontinuation of treatment [4]. SSRIs are used more commonly, but are associated with side effects such as drowsiness, diarrhea, insomnia, restlessness, and sexual problems [5]. Tricyclic antidepressants are generally not tolerated well and are associated with many more adverse effects, mostly anticholinergic effects (blurred vision, dry mouth, constipation, and urinary retention) [6]. NARIs and SNRIs have similar effects with addition of sweating and flushing, tachycardia, and hypertension [7]. Along with adverse effects, the newer drugs also carry financial burden. Therefore, there is a need of discovering newer, safer, cost-effective alternative therapies. Golden seal is also called *Hydrastis canadensis* belongs to the buttercup family. It is a perennial herb with a yellowish color. This herb was approved in the USA Pharmacopoeia and in the national formulary in the 18th and 19th century [8]. Conventionally, it is used for treatment and prevention of flu and cold. It is a rich herb with many phytoconstituents ranging from amino acids to alkaloids, flavonoids, and steroids. The most common constituents found in this herb are alkaloids including hydrastine, canadine, and berberine [9]. An alkaloid, berberine, derived from this plant is used in Chinese folklore tradition for mood elevating effect; however, this has not been scientifically proven.
effects [10], [11]. This herb is useful for treating and preventing flu and cold. It has documented antibacterial, immune enhancing, anti-inflammatory, antioxidant, and anticancer effects [12], [13], [14], [15]. This plant is rich in phytoconstituents; however, its effects at central nervous system have not been evaluated. As the plant is used as an antidepressant in alternative medicine and is rich in various implicated phytoconstituents, it can demonstrate CNS stimulant effects. Therefore, our study is aimed at evaluating the antidepressant effects in mice by assessing the locomotor index using an actimeter.

Materials and Methods

Drugs and plant materials

Fluoxetine hydrochloride 10 mg tablets (Prozac (TN), SPIMACO, Al-Qassim Pharmaceuticals Goldenseal (Hydrastis canadensis) root) and GNC Herbs (Starwest Botanicals) were used.

Preparation of ethanolic extract

Ethanolic extract was prepared by maceration technique. A 50 g of dried root (Hydrastis canadensis) was crushed to fine powder and placed in 500 ml ethanol [16]. The mixture will be shaken frequently for 3 days [16]. Next, after filtration, the filtrate was dried in rotary evaporator (temperature at 60°C, rotations at 80/min). The dried filtrate was stored in clean sealed test tubes and kept in refrigerator until further use.

Phytochemical analysis

Extract was evaluated for the presence of flavonoids, phenols, alkaloids, steroids, and tannins by preliminary phytochemical screening [17].

Animals/Grouping

Swiss albino mice (18–30 g) of either sex were provided by the animal house at King Khalid University, Abha, Saudi Arabia. Animals were kept in free area in cage, maintained on standard light cycle (12 h light/dark), and supplied with standard food and water. All experiments were carried out after ethical approval from Ethics Committee, King Khalid University. The animals were grouped as follows (n = 5):

- Group I: Tween-80 (negative control)
- Group II: Fluoxetine 10 mg/kg (positive control)
- Group III: H. canadensis extract 150 mg/kg
- Group IV: H. canadensis extract 250 mg/kg

Antidepressant activity (Locomotor activity)

The animal locomotor behavior was monitored using actimeter (Panlab Harvard Apparatus). This apparatus has a square arena with a light source provided with photocells. The locomotor activity was recorded with a digital counter. Each animal was placed individually in the apparatus and its basal movement was recorded for 5 min [18]. Next, each animal was treated with respective drug (intraperitoneal injection) and activity score was recorded after 30 min and 1 h [18]. The extract dose was 150 mg/kg and 250 mg/kg [19], [20]. Extract was dissolved in 1% Tween-80 for intraperitoneal injection. Mean of activity score for each group was calculated and compared. Increased activity score was taken as index of antidepression [18].

Statistical analysis

All data were expressed as mean ± SEM and analyzed using ANOVA. p < 0.05 was considered statistically significant.

Results

The phytochemical analysis yielded positive results for alkaloids and saponins. Flavonoids, steroids, and tannins were negative (Table 1). Mean of each group was taken and compared. Locomotion was increased in groups treated with fluoxetine and extract at 150 mg and 250 mg/kg dose at 30 min and 60 min when compared to negative

![Graph showing locomotor activity](https://www.id-press.eu/mjms/index)

Figure 1: Assessment of locomotor activity control (Figure 1). This was an index of antidepressant effect. However, the results were statistically significant (p < 0.05) for fluoxetine (at 30 min and 60 min) and extract treated groups at 250 mg/kg (at 60 min). Fluoxetine demonstrated the highest antidepressant effect followed on by extract at 250 mg/kg dose (Table 2).

Table 1: Phytochemical screening of Hydrastis canadensis extract

<table>
<thead>
<tr>
<th>Compound</th>
<th>Tannins</th>
<th>Alkaloids</th>
<th>Flavonoids</th>
<th>Steroids</th>
<th>Saponins</th>
</tr>
</thead>
<tbody>
<tr>
<td>Result</td>
<td>Negative</td>
<td>Positive</td>
<td>Negative</td>
<td>Negative</td>
<td>Positive</td>
</tr>
</tbody>
</table>

https://www.id-press.eu/mjms/index
Table 2: Mean ± SEM (locomotor activity in 5 min)

<table>
<thead>
<tr>
<th>Group</th>
<th>0 min (baseline)</th>
<th>30 min (after dose)</th>
<th>60 min (after dose)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group I – Tween 1 ml</td>
<td>702 ± 8.9</td>
<td>699 ± 10.9</td>
<td>698 ± 10.4</td>
</tr>
<tr>
<td>Negative control</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group II – Fluoxetine 10 mg/kg</td>
<td>698 ± 8.5</td>
<td>742 ± 15.5*</td>
<td>774 ± 15.7*</td>
</tr>
<tr>
<td>Group III – H. Canadensis extract 150 mg/kg</td>
<td>696 ± 5.9</td>
<td>712 ± 11.7</td>
<td>710 ± 17.2</td>
</tr>
<tr>
<td>Group IV – H. Canadensis extract 250 mg/kg</td>
<td>703 ± 8.5</td>
<td>718 ± 2.3</td>
<td>746 ± 14.0*</td>
</tr>
</tbody>
</table>

* P value is significant (<0.05) when compared to negative control (calculated by one-way ANOVA)

Discussion

Depression is a debilitating disease with many effects at personal and social levels. Although there are many drugs available for its treatment, they come with the burden of adverse effects and dependence. Traditional plants are used nowadays to counteract this disease. One famous plant is St. Johns Wort, it has extensive application as an antidepressant [21]. New plants are being evaluated for the same. The active constituents in plants, which have proven effects as antidepressants, are flavonoids and alkaloids. In this study, phytochemical analysis of plant was positive for alkaloids and saponins. The extract documented statistically significant antidepressant potential at 250 mg/kg. Alkaloids have documented antidepressant effects. One famous alkaloid, berberine, derived from plants is already in use as a mood stimulant in China [22]. Some of its effects include modulation of serotonergic, noradrenergic, and dopaminergic pathways [22]. Berberine has also shown significant effects on immobility time and climbing behavior in neuropsychopharmacology experiments carried out in rodents [23]. An alkaloid derived from researchers in Brazil from Psychotria myriantha Mull., also exhibited antidepressant-like effect when studied on serotonin system in rat hippocampus [24]. This alkaloid has numerous effects, such as anti-inflammatory, antitumor, hypolipidemic, antioxidant, and antibacterial [10]. Its effects at neurological levels are an emerging topic. This alkaloid has also been reported to have good penetration and dissolvability in brain [25].

The most important effects of these plant alkaloids are due to their effects on monoamine oxidase (MAO A and B). These enzymes are critical for the metabolism of various neurotransmitters in the brain such as norepinephrine, serotonin, and dopamine [26], [27]. Inhibition on MAOs could increase monoamine neurotransmitters in brain and reduce depressive symptoms [28].

According to monoamine hypothesis, the main pathology in depression is dysregulation of neurotransmitters, mainly serotonin, dopamine, and norepinephrine [29]. Alkaloids have shown to regulate these biogenic neurotransmitters in animal studies. These neurotransmitters are released from neurons during electrical synaptic transmission in the central nervous system.

Monoamine oxidase inhibitors are group of drugs that are already available in the market for treating depression. These drugs, however, come with adverse effects, drug interactions, and increased noncompliance. Some of the side effects are sedation, euphoria, and postural hypotension [30]. Animal studies have proven that plant-based alkaloids have antidepressant potential. These are vastly available in nature and could be a more economical, safer, and long-term therapy for depression.

Conclusion

This study has indicated antidepressant potential of the ethanolic extract of Hydrastis canadensis root. This could provide an alternative, safer, and cost-effective therapy for the treatment of depressive illness.

Limitation

This is a preliminary study. Larger scale studies with increased number of animals and different test models will be required for validation of results. The mechanism at cellular level could not be evaluated due to limitation in facility resources.

Acknowledgment

The authors are grateful to the Faculty of Pharmacology Department, King Khalid University, for providing the facilities for this research.

References

A - Basic Sciences Pharmacology

PMid:15014625

PMid:12461154

PMid:11627733

PMid:19998323

PMid:26092760

PMid:11509983

PMid:10424448

PMid:24669227

PMid:23628949

PMid:23661522

PMid:23269899

PMid:28290706

PMid:22546150

PMid:15996686

PMid:9503565

PMid:9481038

PMid:17757651

PMid:10424448

PMid:1364815

https://www.id-press.eu/mjms/index