The use of Cinnamon (Cinnamomum Bark) for Patients with Chronic Prostatitis/Chronic Pelvic Pain Syndrome: A Randomized Controlled Trial

Harth Mohamed Kamber1,*, Tawfiq Jasim Mohammed Al-Marzooq2, Malath Anwar Hussein3, Qays Ahmed Hassan3, Ahmed Abid Marzouq2

1Department of Surgery, Division of Urology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq; 2Department of Surgery, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq; 3Department of Surgery, Division of Radiology, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq; 4Department of Community medicine, Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq

Abstract

BACKGROUND: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is common, yet no curative treatment identified. Cinnamon is a herbal substance, which has many applications in medicine.

AIM: The aim of the study was to study the effect of cinnamon on patients with chronic pelvic pain syndrome.

METHODS: Sixty patients with documented CP/CPPS randomized into two groups during 2018 and 2019 in Baghdad. The first group received 60 capsules each contained 1 g of cinnamon. The other group received 60 capsules each contained 1 g of sugar powder (placebo). All the patients instructed to take one capsule twice daily for 1 month. National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) was reported for both groups at baseline and after 1 month of treatment. The primary outcome was a patient perceivable improvement defined as a reduction of the NIH-CPSI by 6 or more points after 1 month, whereas improvement of sub-scores of NIH-CPSI (pain, urinary symptoms, and quality of life) considered as a secondary outcome, and adverse reactions reported.

RESULTS: Thirteen patients (43.3%) of the cinnamon group have 6 or more points of reduction in the total NIH-CPSI compared to four patients (13.3%) of the control groups (p = 0.01). The improvement in total NIH-CPSI score was mainly due to improvement in pain sub-score, whereas in urinary symptoms, there was marginal change with no significant change in the quality of life score. The only reported side effect was gastric upset in one patient.

CONCLUSION: The study concluded that cinnamon improves NIH-CPSI in patients with CP/CPPS.

Introduction

National Institutes of Health (NIH) defines chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) as the presence of genitourinary pain in the absence of uropathogenic bacteria detected by standard microbiologic methodology [1], [2], [3].

The presence of symptoms resembling that of CP/CPPS in different population fall in the range between 2.2% and 9.7% with a mean prevalence of 8.2%, making CP/CPPS as one of common urologic problems. Nevertheless, its etiology and pathophysiology are poorly understood with no solid guidelines for effective treatment [4], [5].

Prolonged period of antibiotic therapy is usually used as the first line in the treatment of CP/CPPS in the first place regardless of the finding of prostatic fluid microscopic examination and culture. When this approach fails, the next option of managements which have been tried and investigated include medications such as alpha-blockers, anti-inflammatory drugs, muscle relaxants, anticonvulsants, phosphodiesterase type 5 inhibitors or even hormonal manipulation, also physiotherapy, behavioral therapy, herbal, or even surgical interventions. Despite the multiplicity of the treatment options, none of these options proved curative for all patients with CP/CPPS. Therefore, the trial of different treatment options in the hope of finding effective treatment is justifiable [6], [7].

Cinnamon is the bark of trees belonging to the genus Cinnamomum. It is an aromatic spice that is used in traditional medicine for multiple purposes, including relieving of pain. Cinnamon is also proved to have an antibacterial effect (Figure 1) [8], [9], [10].

Cinnamon has a well-known scent due to its oil content, which has a high concentration of cinnamaldehyde in addition to several other compounds.
such as cinnamyl acetate, L-borneol, caryophyllene oxide, eugenol, b-caryophyllene, L-bornyl acetate, E-nerolidol, α-terpineol, α-cubebene, terpinolene, and α-thujene. Besides, cinnamon contains a variety of resinous compounds, including cinnamate and cinnamic acid [11, [12], [13].

Cinnamon has been long used in kitchens as spice and appetizer without reported serious adverse events. The beneficial health attributes of cinnamon and its derivative and components reported by several researchers. These include its antimicrobial, anti-inflammatory, antioxidant, anti-diabetic, analgesic, and even anticancer properties. Nevertheless, further studies are still required to illuminate the potential health benefits of the spice [14], [15], [16], [17], [18].

The “National Institutes of Health Chronic Prostatitis Symptom Index” (NIH-CPSI) is developed as a tool to assess the severity of symptoms of CP/CPPS [19].

A reduction of 6 or more points in the NIH-CPSI score showed to be clinically perceivable difference by the patients in the previous studies [20].

A validated Arabic version of NIH-CPSI showed “excellent internal consistency” and correlates well with the severity of symptoms in patients with CP/CPPS [21].

This study is designed to observe the effect of cinnamon on patients with chronic pelvic pain syndrome.

Materials and Methods

Ethical approval and registration

The study approved by the Scientific Unit and Medical Ethics Committee at Al Kindy College of Medicine, University of Baghdad and had the approval number: 165.10/04/2019.

The study registered on ClinicalTrials.gov with the ID: NCT03946163.
powder and instructed to take one capsule twice daily for 1 month. Whereas each patient in the other group received 60 capsules similar to those given to the first group in shape, size, color, and smell containing 1 g of sugar powder as a placebo and instructed to take one capsule twice daily for 1 month. The compliance of the patients with the treatment was measured by counting the residual capsule after conclusion of the study period.

Each patient filled a validated questionnaire of translated NIH-CPSI (Arabic version) before starting treatment and 1 month later. Each patient on the questionnaire can score a total of (0–43) (the higher the score, the more severe are the symptoms). The total score divided into three sub-scores for the following domains: Pain (0–21), urinary symptoms (0–10), and quality of life (0–12) [21].

Any complaints of the patients from the drug or unwanted effects were reported as adverse effects.

The study was triple blinded; the patients, the researchers, and the statistical investigator all were blinded to the content of the capsules until the conclusion of the study.

Outcome measures

A reduction in the NIH-CPSI score of six or more points from the initial score (a patient perceivable improvement) considered as a positive response (the primary outcome). A reduction in the total NIH-CPSI or in one or more of its sub-scores dealt with as a minor positive response (secondary outcome). The adverse effects were reported.

Statistical analysis

The data were analyzed using SPSS version 16 using descriptive statistics for all variables, independent t-test to compare both groups before the intervention, covariance analysis to analyze continuous variables regarding the effect of the intervention on both groups, and Chi-square test to analyze categorical variable regarding the effect of the intervention on both groups. p < 0.05 was considered significant.

Results

Of the 64 patients recruited for the clinical trial, four patients were excluded: One due to food allergy, two patients were excluded one due to uncontrolled chronic obstructive airway disease and the other due to uncontrolled diabetes mellitus, another patient decline to participate in the clinical trial. The remaining 60 patients randomized into two groups, 30 patients in each group (Figure 2).

Table 1: Patients’ age and duration of complaint of studied subjects according to the group of study

<table>
<thead>
<tr>
<th>Group</th>
<th>Group</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>Control</td>
<td>30</td>
<td>37.7</td>
<td>11.04</td>
<td>0.927</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>30</td>
<td></td>
<td>37.0</td>
<td>8.51</td>
<td></td>
</tr>
<tr>
<td>Duration (months)</td>
<td>Control</td>
<td>30</td>
<td>13.3</td>
<td>8.18</td>
<td>0.674</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>30</td>
<td></td>
<td>12.6</td>
<td>4.77</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Pain, urinary symptoms, quality of life, and NIH-CPSI scores of studied subjects before intervention according to the group of study

<table>
<thead>
<tr>
<th>Group</th>
<th>Group</th>
<th>n</th>
<th>Mean</th>
<th>SD</th>
<th>p-value*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pain</td>
<td>Control</td>
<td>30</td>
<td>11.1</td>
<td>4.55</td>
<td>0.704*</td>
</tr>
<tr>
<td>Urinary symptoms</td>
<td>Control</td>
<td>30</td>
<td>10.6</td>
<td>4.90</td>
<td></td>
</tr>
<tr>
<td>Cinnamon</td>
<td>30</td>
<td></td>
<td>5.8</td>
<td>3.15</td>
<td>0.141*</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>30</td>
<td></td>
<td>4.7</td>
<td>2.71</td>
<td></td>
</tr>
<tr>
<td>Quality of life</td>
<td>Control</td>
<td>30</td>
<td>6.7</td>
<td>3.29</td>
<td>0.354*</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>30</td>
<td></td>
<td>6.0</td>
<td>2.63</td>
<td></td>
</tr>
<tr>
<td>NIH-CPSI</td>
<td>Control</td>
<td>30</td>
<td>23.7</td>
<td>8.69</td>
<td>0.273*</td>
</tr>
<tr>
<td>Cinnamon</td>
<td>30</td>
<td></td>
<td>21.3</td>
<td>7.81</td>
<td></td>
</tr>
</tbody>
</table>

Discussion

Cinnamon produced perceivable improvement in patients with CP/CPPS by reducing mainly the pain
score on the NIH-CPSI and hence the total score, yet it does not affect the quality of life score and it marginally increases the urinary symptoms score. The only reported side effect was gastrointestinal upset.
The proposed etiology of CP/CPPS includes infection, inflammation, hormonal, and neuronal reasons or even autoimmunity may contribute to the development of CP/CPPS [24].

Proper management of CP/CPPS has always been a challenging task due to elusive etiological mechanisms [25].

Effect of cinnamon on pain was reported for perineal and pelvic pain in the previous studies and found to produce a noticeable improvement in primary dysmenorrhea and after episiotomy [17], [18], [26], [27].

Cinnamon essential oil possesses antinociceptive properties. Its potency in chronic pain inhibition was similar to diclofenac; though its acute antinociceptive effect reported to be less than morphine in mice [28].

Cinnamon extract in high doses decreased the chronic pain intensity in animal studies [28], [29].

The pain-reducing action found in this study is consistent with that found in other studies. Jaafarpour et al. in 2015 and Jahangirifar et al. in 2018 both found that cinnamon significantly reduces the pain of primary dysmenorrhea. Mohammadi et al. in 2014 found that the local use of cinnamon ointment improves healing and reduces the pain of episiotomy incisions [17], [18], [26], [27].

Dashti-Rahmatabadi et al. in 2009 found that cinnamon extract in high dose decreases the intensity of chronic formalin-induced pain in rats [29].

Cinnamon has documented anti-inflammatory effect probably through anti-complement activity and inhibition of complement-dependent inflammatory cascade [30], [31].

Antioxidant activity of cinnamon extracts, its essential oil, and eugenol (one of its components) documented in vitro using an oxidative β-carotene/linoleic acid system, peroxynitrite-induced nitration, lipid peroxidation, and 1,1-diphenyl-2-picrylhydrazine test [32], [33], [34], [35], [36].

Thermo-sensitive transient receptor potential (TRP) channels, especially TRPV1 and TRPA1, are activated by the pungent compounds present in spices. Studies showed that TRPA1 agonists such cinnamonaldehyde, the pungent ingredients in cinnamon activate the sensory nerves and induce adrenaline secretion through the central nervous system [37].

Furthermore, linalool is one of the monoterpene compounds in cinnamon that affects pain receptors and causes analgesia. Linalool creates inhibitory capability in the central nervous system neurons by opening potassium channels. Phenols like eugenol inhibit calcium entrance inside the cell and so control the release of neurotransmitters interfering in pain from terminals of afferent fibers in the posterior horn of the spinal cord [29], [38].

The pain-relieving properties of cinnamon can be the result of its anti-inflammatory, anti-oxidant, TRPA1-activation-induced central adrenalin secretion, linalool central nervous system inhibitory properties, eugenol pain transfer inhibitory properties, or the combination of some, or all of the above [29], [32], [33], [34], [35], [36], [37], [38].

The minor increment in urinary symptoms sub-score is probable due to the pungent effect of cinnamonaldehyde; the aromatic compound of cinnamon.

Spicy food found to aggravate symptoms in CP/CPPS by Herati et al., although the paper they published did not demonstrate the change in specific domains in NIH-CPSI [39].

Tripp et al. in 2004 reported that the quality of life in patients with CP/CPPS correlated directly with both pain and urinary symptoms, with pain being the most “robust predictor” for the quality of life in these patients [40].

The quality of life improved more for the cinnamon group, but not to the point of statistical significance. This can be explained by the improvement of pain accompanied by worsening of urinary symptoms.

The side effect of cinnamon reported in this study is expected since self-limiting gastrointestinal adverse events are the most commonly reported side effect of cinnamon [41].

The study limited by the relatively short period of follow-up, a longer period of follow-up to observe the consistency of the change in symptoms would provide a more reliable outcome. Another limitation is the number of the recruited patients; although based on reliable literature, a larger number of patients would provide more power to the study. Another limitation of this study is the use of the translated version of the NIH-CPSI, the validation of the translated version does not make the perception of the patient to the questionnaire as that of the native English speaker to the English version, but

Table 4: The effect of cinnamon treatment in comparison with placebo on total NIH-CPSI score, pain score, urinary symptoms score, and quality of life score

<table>
<thead>
<tr>
<th>Score</th>
<th>Group</th>
<th>n</th>
<th>Estimated baseline Mean</th>
<th>Estimated end line Mean</th>
<th>95% Confidence interval</th>
<th>Outcome (Endline-baseline)</th>
<th>% of difference</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIH-CPSI</td>
<td>Control</td>
<td>30</td>
<td>22.53</td>
<td>19.99</td>
<td>0.616</td>
<td>18.765, 21.230</td>
<td>−0.54</td>
<td>−12.71</td>
</tr>
<tr>
<td></td>
<td>Cinnamon</td>
<td>30</td>
<td>17.53</td>
<td>21.53</td>
<td>0.586</td>
<td>16.303, 18.678</td>
<td>−5.90</td>
<td>−28.55</td>
</tr>
<tr>
<td>Pain</td>
<td>Control</td>
<td>30</td>
<td>10.87</td>
<td>9.395</td>
<td>0.382</td>
<td>8.63, 10.159</td>
<td>−1.18</td>
<td>−15.70</td>
</tr>
<tr>
<td></td>
<td>Cinnamon</td>
<td>30</td>
<td>6.305</td>
<td>5.584</td>
<td>0.382</td>
<td>5.541, 7.507</td>
<td>−4.57</td>
<td>−72.40</td>
</tr>
<tr>
<td>Urinary symptoms</td>
<td>Control</td>
<td>30</td>
<td>5.27</td>
<td>4.87</td>
<td>0.223</td>
<td>4.421, 5.315</td>
<td>−0.40</td>
<td>−8.21</td>
</tr>
<tr>
<td></td>
<td>Cinnamon</td>
<td>30</td>
<td>5.80</td>
<td>5.28</td>
<td>0.223</td>
<td>5.789, 6.245</td>
<td>0.53</td>
<td>9.14</td>
</tr>
<tr>
<td>Quality of life score</td>
<td>Control</td>
<td>30</td>
<td>6.40</td>
<td>5.80</td>
<td>0.224</td>
<td>5.349, 6.247</td>
<td>−0.60</td>
<td>−10.34</td>
</tr>
<tr>
<td></td>
<td>Cinnamon</td>
<td>30</td>
<td>5.37</td>
<td>5.24</td>
<td>0.224</td>
<td>4.920, 5.818</td>
<td>−1.03</td>
<td>−19.18</td>
</tr>
</tbody>
</table>

*Statistical tests used a covariance analysis. Significant p<0.05.
it gives acceptable reliability to the results of the score obtained from it.

Conclusion

Cinnamon produces patient-perceivable improvement in symptoms of patients with CP/CPPS. For these patients, cinnamon reduces the total NIH-CPSI significantly through reduction of pain, yet it probably affects the urinary symptoms adversely and does not affect the quality of life significantly, whereas the side effects are minor and tolerable.

We recommend further studies on a larger group of patients with CP/CPPS to confirm the beneficial effect of cinnamon with the early exclusion of those who have worsening of their urologic symptoms. Besides, cinnamon contains multiple active ingredients, the study of separate, isolated chemicals extracted from cinnamon may prove better improvement with less adverse effects, further isolation, and study of each ingredient alone is a noteworthy recommendation.

Acknowledgments

The authors would like to thank Al-Kindy Teaching Hospital for their co-operation in achieving this research and to thank Dr. Yousif Abdul Rahim professor of community medicine in Al-Kindy College of Medicine for his invaluable support and advice.

References

PMid:16468084

PMid:17033210


PMid:18405756

PMid:11642334.

PMid:30966267

PMid:26023350


PMid:18388511.

PMid:15610105.

PMid:24716111

PMid:10780875

PMid:12730411

PMid:15941312

PMid:10077878

PMid:1162334.

PMid:18388511.

PMid:25312163.

PMid:23978369.

PMid:15610105.

PMid:29661513.