Vol. 13 No. 1 (2021): Archives of Public Health
Clinical Science

Relationship of serum procalcitonin levels and c-reactive protein levels in newborns with sepsis in different types of respiratory support in intensive care unit

Aspazija Sofijanova
University Clinic for chidren's diseases; Ss. Cyril and Methodius University in Skopje, Faculty of Medicine, Republic of North Macedonia
Sonja Bojadzieva
University Clinic for chidren's diseases; Ss. Cyril and Methodius University in Skopje, Faculty of Medicine, Republic of North Macedonia
Silvana Naunova- Timovska
University Clinic for chidren's diseases; Ss. Cyril and Methodius University in Skopje, Faculty of Medicine, Republic of North Macedonia
Hristina Mandzukovska
University Clinic for chidren's diseases; Ss. Cyril and Methodius University in Skopje, Faculty of Medicine, Republic of North Macedonia
Elizabeta Shuperliska
University Clinic for chidren's diseases, Skopje, Republic of North Macedonia
Olivera Jordanova
University Clinic for chidren's diseases, Skopje, Republic of North Macedonia

Published 2021-06-20

Keywords

  • procalcitonin,
  • newborns,
  • respiratory distress syndrome

How to Cite

1.
Sofijanova A, Bojadzieva S, Naunova- Timovska S, Mandzukovska H, Shuperliska E, Jordanova O. Relationship of serum procalcitonin levels and c-reactive protein levels in newborns with sepsis in different types of respiratory support in intensive care unit. Arch Pub Health [Internet]. 2021 Jun. 20 [cited 2024 Mar. 29];13(1):39-47. Available from: https://www.id-press.eu/aph/article/view/5995

Abstract

Sepsis in newborns with RDSy and asphyxia is essential; it is a life-threatening condition and still represents an important cause of mortality and morbidity. The aim of this study was to evaluate the predictive values of procalcitonin (PCT) as an early diagnostic and prognostic biochemical marker for sepsis in newborns with RDS and asphyxia. Material and methods: The study was designed as prospective and we examined 110 newborns with proven sepsis admitted in the Intensive  Care Unit at the University Clinic of Pediatrics – Skopje in the period between December 2018 and Јanuary 2021. Procalcitonin levels were measured by using the immunoassay system Vidas based on the ELFA principles. The newborns with proven sepsis were divided into two groups. The first group comprised 55 newborns with RDS and proven sepsis and the second group included 55 newborns with asphyxia and proven sepsis. The statistical analysis confirmed significantly different values ​​of PCT in the analyzed time period in first group of newborns with RDS and proven sepsis, p<0.001. The highest average values (40.37±53.79) ​​were measured on admission with a high level of peak compared to the second group of newborns with asphyxia and proven sepsis. The statistical analysis confirmed significantly different values ​​of PCT in the analyzed time period in the first group of newborns with RDS and proven sepsis with mechanical ventilation (MV) and bubble continuous positive airway pressure (BCPAP) compared to the second group of newborns with asphyxia  and proven sepsis,  p<0.001. PCT is a promising sepsis marker in newborns with RDSy, capable of complementing clinical signs and routine laboratory parameters suggestive of severe infection at the time of ICU admission.

 

Downloads

Download data is not yet available.

References

  1. Kliegman RM, Stanton B, Geme JS, St Schor NF, Behrman RE. Nelson textbook of pediatrics. 20th ed. Philadelphia (PA): Elsevier Health Sciences; 2015
  2. Whicher J, Bienvenu J, Monneret G. Procalcitonin as an acute phase marker. Ann Clin Biochem 2001;38(Pt 5):483–493.
  3. Gogos CA, Drosou E, Bassaris HP, Skoutelis A. Pro- versus anti-inflammatory cytokine profile in patients with severe sepsis: a marker for prognosis and future therapeutic options. J Infect Dis 2000;181:176–180. DOI: https://doi.org/10.1086/315214
  4. Müller B, White JC, Nylén ES, Snider RH, Becker KL, Habener JF. Ubiquitous expression of the calcitonin-i gene in multiple tissues in response to sepsis. J Clin Endocrinol Metab 2001;86:396–404. DOI: https://doi.org/10.1210/jcem.86.1.7089
  5. Chiesa C, Panero A, Rossi N, Stegagno M, De Giusti M, Osborn JF, et al. Reliability of procalcitonin concentrations for the diagnosis of sepsis in critically ill neonates. Clin Infect Dis 1998;26:664–672. DOI: https://doi.org/10.1086/514576
  6. Christ-Crain M, Müller B. Procalcitonin in bacterial infections: hype, hope, more or less? Swiss Med Wkly 2005;135:451–460.
  7. Uzzan B, Cohen R, Nicolas P, Cucherat M, Perret GY. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 2006;34:1996–2003. DOI: https://doi.org/10.1097/01.CCM.0000226413.54364.36
  8. Bouiller JP, Dreyfus M, Mortamet G, Guillois B, Benoist G. Intrapartum asphyxia: Risk factors and short-term consequences. Journal de gynecologie, obstetrique et biologie de la reproduction 2015;45(6):626-32. DOI: https://doi.org/10.1016/j.jgyn.2015.06.022
  9. Mehrabadi A, Lisonkova S, Joseph KS. Heterogeneity of respiratory distress syndrome: risk factors and morbidity associated with early and late gestation disease. BMC pregnancy and childbirth 2016;16(1):281. DOI: https://doi.org/10.1186/s12884-016-1085-7
  10. Reuter S, Moser C, Baack M. Respiratory distress in the newborn. Pediatrics in review. 2014;35(10):417. DOI: https://doi.org/10.1542/pir.35-10-417
  11. Hibbard JU, Wilkins I, Sun L, Gregory K, Haberman S, Hoffman M et al. Respiratory morbidity in late preterm births. JAMA: the journal of the American Medical Association 2010;304(4):419. DOI: https://doi.org/10.1001/jama.2010.1015
  12. Bak SY, Shin YH, Jeon JH, Park KH, Kang JH, Cha DH, et al. Prognostic factors for treatment outcomes in transient tachypnea of the newborn. Pediatrics International 2012;54(6):875-80. DOI: https://doi.org/10.1111/j.1442-200X.2012.03693.x
  13. Bohlin K, Gudmundsdottir T, Katz-Salamon M, Jonsson B, Blennow M. Implementation of surfactant treatment during continuous positive airway pressure. Journal of Perinatology 2007;27(7):422-7. DOI: https://doi.org/10.1038/sj.jp.7211754
  14. Aldana-Aguirre JC, Pinto M, Featherstone RM, Kumar M. Less invasive surfactant administration versus intubation for surfactant delivery in preterm infants with respiratory distress syndrome: a systematic review and meta-analysis. Archives of Disease in Childhood-Fetal and Neonatal Edition 2017;102(1):F17-23. DOI: https://doi.org/10.1136/archdischild-2015-310299
  15. Bancalari E, Claure N. Advances in respiratory support for high risk newborn infants. Maternal health, neonatology and perinatology 2015;1(1):1-0. DOI: https://doi.org/10.1186/s40748-015-0014-5
  16. Aly H, Mohamed MA. An experience with a bubble CPAP bundle: is chronic lung disease preventable?. Pediatric research 2020;88(3):444-50. DOI: https://doi.org/10.1038/s41390-020-0763-3
  17. Baier C, Pirr S, Ziesing S, Ebadi E, Hansen G, Bohnhorst B, Bange FC. Prospective surveillance of bacterial colonization and primary sepsis: findings of a tertiary neonatal intensive and intermediate care unit. Journal of Hospital Infection 2019;102(3):325-31. DOI: https://doi.org/10.1016/j.jhin.2019.01.021
  18. Ugarte H, Silva E, Mercan D, DeMendonca A, Vincent JL. Procalcitonin used as a marker of infection in the intensive care unit. Crit Care Med 1999;27:498–504. DOI: https://doi.org/10.1097/00003246-199903000-00024
  19. Remington JS, Klein JO. Bacterial sepsis and meningitis. Infectious diseases of the fetus and newborn infant. Philadelphia: W.B.Saunders Company; 2001.
  20. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016;315(8):801-10. DOI: https://doi.org/10.1001/jama.2016.0287
  21. Stoll BJ, Hansen N, Fanaroff AA, et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N Engl J Med 2002; 347(4): 240–247.
  22. Weinschenk NP, Farina A, Bianchi DW. Premature infants respond to early-onset and late onset sepsis with leukocyte activation. J Pediatr 2000;137:345–350. DOI: https://doi.org/10.1067/mpd.2000.107846
  23. Hermansen CL and Lorah KN. Respiratory distress in the newborn. Am Fam Physician 2007;76(7):987-94
  24. Stoll BJ, Hansen N, Fanaroff AA, et al. Changes in pathogens causing early-onset sepsis in very-low-birth-weight infants. N Engl J Med 2002; 347(4):240–247. DOI: https://doi.org/10.1056/NEJMoa012657
  25. Whicher J, Bienvenu J, Monneret G. Procalcitonin as an acute phase marker. Ann ClinBiochem 2001;38(Pt 5):483–493. DOI: https://doi.org/10.1177/000456320103800505
  26. Oswyn G, Vince JD, Friesen H. Perinatal asphyxia at Port Moresby General Hospital: a study of incidence, risk factors and outcome. P N G Med J 2000;43:110–120. 4.
  27. PálsdóttirK, Thórkelsson T, Hardardóttir H, DagbjartssonA. Birth asphyxia, neonatal risk factors for hypoxic ischemic encephalopathy. Laeknabladid 2007; 93(10): 669-73
  28. Riedel S, et al. Procalcitonin as a marker for the detection of bacteremia and sepsis in the emergency department. Am J ClinPathol 2011; 135: 182-89. DOI: https://doi.org/10.1309/AJCP1MFYINQLECV2
  29. Schuetz P, Christ-Crain M, Müller B. Procalcitonin and other biomarkers for the assessment of disease severity and guidance of treatment in bacterial infections. Adv Sepsis 2008; 6,3: 82-89.
  30. Rhodes A, Evans LE, Alhazzani W, et al. Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016. Intensive Care Med 2017; 43(3): 304-77. DOI: https://doi.org/10.1007/s00134-017-4683-6