ORAL HEALTH

NON-SYNDROMIC MULTIPLE TEETH IMPACTION - CASE REPORT

Daniela Srbinoska¹, Vesna Trpevska¹, Aneta Mijoska²

¹ University Dental Clinical Centre “St. Panteleimon”, Skopje, Republic of North Macedonia
² Faculty of Dentistry, Ss. Cyril and Methodius University in Skopje, Republic of North Macedonia

Abstract

Tooth eruption is a continuous process by which developing teeth move through the soft tissue, oral epithelium, jaw bones and overlying mucosa, to emerge in the oral cavity, contact the teeth of the opposing dental arch, and enable teeth functional position in mastication. Abnormal tissue interactions during tooth development may be potentially revealed as ectopic tooth development, ectopic eruption or tooth impaction. In human dentition, permanent tooth impaction is relatively common. Impaction of the first permanent molar is an uncommon condition and few cases are reported in the literature. It is essential to diagnose and treat the impacted permanent molars as early as possible because treatment at a later stage is usually more complicated due to the tendency of malocclusion to increase with time. We report a case with impaction of the maxillary first permanent molar and impaction of all, maxillary and mandibular permanent second molars. This condition compromise masticatory function. Unilateral mastication also compromises the function of temporomandibular joint. The aim of this case-report was to present orthodox treatment with Schwartz removable appliance in a patient with maxillary left-side impaction of the second premolar, first molar and second molar. The goal of the first phase was positioning the maxillary first molar into the dental arch with good bone and periodontal support. The surgical intervention, operculectomy, was done and the orthodox treatment started by traction of the first molar with elastic ligature attached from the bonded bracket to the mobile appliance. One month later the tooth movement was obvious.
Introduction

Tooth eruption is a continuous process by which developing teeth move through the soft tissue, oral epithelium, jaw bones and overlying mucosa, to emerge in the oral cavity, contact the teeth of the opposing dental arch, and enable teeth functional position in mastication. Humans are diphyodonts, which means we have two sets of teeth during lifetime. The first set, the primary teeth, also called deciduous teeth, or baby teeth, start erupting at around six months of age. The primary teeth fall out and are replaced by second set, permanent teeth about six years of age. The tooth eruption occurs in three phases, pre-eruptive, eruptive and post-eruptive phase. The teeth eruption driving force is still unknown but is thought to be due to a combination of a few factors, which include signals originating from the dental follicle, root formation and elongation, which could drive the tooth in order to acquire space within the jaw and an occlusal force, aiding in eruption\(^1\). Tooth development results from a complicated multistep interaction between the oral epithelium and the underlying mesenchymal tissue. Abnormal tissue interactions during tooth development may potentially result in ectopic tooth development and eruption. Tooth eruption occurs as a tooth moves from the developmental position to the functional position. It is a complex process that can be influenced by a number of general factors like genetics, nutrition, preterm birth, hormonal factors, various systemic diseases and some local factors\(^2\). Delayed eruption or impaction of permanent teeth is one of the severe problems that can occur during the mixed dentition period. An impacted tooth is one that fails to erupt into the dental arch within the expected time. The permanent teeth impaction usually occurs in the downward order of third molars, maxillary canine, mandibular premolars, mandibular canine, maxillary premolars, maxillary central incisors, and mandibular second molars\(^3\). These conditions can occur in any permanent tooth, but the incidence of delayed eruption of the permanent first molars, especially maxillary permanent first molars, is very low. Permanent first molars, known as the “key teeth” in occlusion, are very important as guide to the correct position of the teeth in the dental arch. The eruption of the first and second permanent molars is especially significant for the coordination of facial growth, and for providing sufficient occlusal support for undisturbed mastication. There are many studies of impaction in the literature but only a few cases involving impacted permanent first molars. The impaction of permanent first and second molars is uncommon, with prevalence rates of 0.08% for the second maxillary molar and less than 0.01% for the first maxillary molar. Although, the impaction of mandibular second molars, given that its incidence is 0.03 to 0.21%, is a rare complication in tooth eruption. It has been detected more often in the unilateral form than in the bilateral one and is
more common in the mandible than in the maxilla. Several systemic and local factors are related to the cause of this anomaly. Impaction may result from local causes, such as malocclusion disturbances of the primary dentition, the position of the neighbouring teeth, supernumerary teeth, cysts, and odontoma. Tooth retention has been attributed to an alteration of the dental follicle, which is unable to initiate the metabolic processes leading to bone resorption and eruption. Roots develop completely even when the tooth cannot erupt because root formation seems to be unrelated to the eruption process. Retention may be related to ankylosis, which is probably due to a localised alteration of the periodontal ligament, but it has not yet been determined whether impairment of the eruptive mechanism occurs before or after ankylosis. Based on Winter’s classification systems, impacted molars can be classified as vertical, distoangular, mesioangular, or horizontal in position according to tooth angulation. The occlusal plane can be used as a reference to check the depth of the impacted molars. 2D and 3D radiographs are more than necessary for diagnosis and treatment planning of impacted teeth. Cases with impaction of more than one tooth are indication for CBCT. Multiple impacted teeth are rare condition and usually present in some syndromes. Multiple impacted teeth with no obvious aetiology is rare dental anomaly. In literature, few reports are related to multiple impacted teeth with no known aetiology. Complexity of the treatment varies widely, so management is a big challenge and needs a multidisciplinary specialist approach. Treatment of impacted permanent molar consist of its surgical exposure and removal of any possible barrier. Orthodontic treatment is necessary in the event of abnormal positioning of the tooth, malocclusion, lack of space in the dental arch, or if spontaneous eruption is not expected. Orthodontic correction or prosthetic replacement of the missing tooth are often required. It is essential to diagnose and treat the impacted permanent molars as early as possible because treatment at a later stage is usually more complicated due to the tendency of malocclusion to increase with time and decrease the ability of remaining dentition to adjust. We report a very rare case with multiple teeth impaction where there was impaction of the maxillary first permanent molar, impaction of both maxillary second premolars and impaction of all, maxillary and mandibular permanent second molars. This condition compromise masticatory function. Unilateral mastication also compromise temporomandibular joint (TMJ).

The aim of this case-report was to present orthodontic treatment by Schwartz removable appliance in a patient with maxillary left-side impaction of the second premolar, first molar and second molar. Due to the low prevalence of impaction of the first and second permanent molars, there is a lack of uniformity in the management of these impact-
ed teeth, and published reports are mostly based on case reports with mesially inclined molars. In general, treatment options depend on the age of the patient as one of the key factors, severity of impaction, bone anatomy and position of vital structures, the amount of space available, oral health, type of malocclusion, patient motivation and opinion, as well as patient-related circumstances (finances). Cooperation between different specialties (orthodontists, oral surgeons and paediatric dentists), provides the best, individual results for each patient.

Case report

Treatment objectives

The primary objectives in our treatment were:

- to create anchorage for the orthodontic traction and incorporation of the impacted first molar into the dental arch with good bone and periodontal support;
- to regain slightly more space for the impacted second premolar;
- to position the maxillary and mandibular second molars into the dental arch, and
- to provide functional position to all impacted teeth.

The other objectives were to establish a good occlusion, to obtain an optimal overbite-overjet relationship and to provide long-term retention, to enhance the health of the periodontium, and most importantly to provide bilateral mastication.

Treatment diagnosis

A 12-year-old girl with a late mixed dentition was brought to our Clinic for orthodontic treatment one year ago. The chief complaint was the presence of problems during mastication on the left side due to delayed eruption of the posterior teeth. The patient had no complain of pain, no signs of infection and had a good oral hygiene. Clinical examination revealed normodivergent face and presence of good facial balance in all proportions. Intraoral clinical examination revealed maxillary, unilateral, left-side absence in the oral cavity of the permanent second premolar, first molar and second molar and right-side absence in the oral cavity of the second premolar and second molar. Furthermore, the right and left mandibular second molars were also absent. The mandibular midline was shifted due to hypodontia of the mandibular central incisor. There was a space deficiency for teeth alignment. The patient revealed a limited mouth opening, microstomia. The occlusal examination noted a right-side Angle Class II, OJ was 3 mm and OB 5 mm. There was anterior deep bite and crossbite of the right permanent first molar and primary first molar (Fig. 1 a, b, c, d, e).
The panoramic radiograph revealed that all teeth were present (excluding the third molars and mandibular left central incisor). Hypodontia of the left mandibular central incisor was obvious. The left-side maxillary permanent second premolar, first molar and second molar were impacted. Furthermore, there was impaction and transposition of the right-side maxillary second premolar and impaction of all, maxillary and mandibular second molars and therefore, delayed teeth eruption to the dental arch. The panoramic radiograph revealed that the left-side second premolar and first molar posture were mesioangular and the position of the right-side second premolar was almost horizontal (Fig. 2).

A CBCT was prescribed at this stage due to the impaction of many teeth. The CBCT showed areas with partial absence of alveolar bone and periodontal ligament on labial side of the left-side maxillary and mandibular first molars. Extrusion of the left mandibular first molar was notable due to absence of its antagonist and unilateral mastication (Fig. 3 a, b).
Treatment plan

In the presented case we used Schwartz removable appliance for the traction of the left upper first molar and expansion of the maxilla and mandibula. Based on the patient’s symptoms, extraoral and intraoral examination, as well as on panoramic radiograph and CBCT analysis, our treatment plan included:

- consultation with an oral surgeon about operculectomy of the impacted left-side maxillary first molar;
- intervention, surgical removal of the mucosa tissue of the occlusal surface of the first permanent maxillary molar was done and then we monitored/observed the impacted tooth until the spontaneous eruption occurred;
- in our case eruption did not occur, and hence we assisted the eruption of the impacted teeth by orthodontic traction.

The initial therapy had started with wearing mobile appliance one year ago. A standard molar bracket was bonded three days after operculectomy, so we started positioning the tooth in the dental arch (Fig. 4 a, b).

Figure 3. CBCT radiograph of a 12-year-old patient before treatment: a) Occlusal view of upper dental arch and labial view of partial absence of alveolar bone and periodontal ligament of the left-side maxillary and mandibular first molar, b) Notable extrusion of the left mandibular first molar due to absence of antagonist (maxillary first molar) and unilateral mastication.

Figure 4. a) Standard molar bracket bonded three days after operculectomy b) Occlusal view
The traction of the first molar was with elastic ligature attached to the mobile appliance. Furthermore, the orthodontic treatment in mandibula as in maxilla continued by their expansion (Fig. 5 a, b, c, d).

One month later, the tooth movement was obvious, the upper first molar emerged from the gingiva and reached a more occlusal position by traction. The molar was further extruded. At 10-month follow-up, the extrusion of the left maxillary molar continued, remained vital and responded normally to mobility and sensitivity with a good width of attached gingiva.

Discussion

Tooth eruption is the axial movement of the tooth from its position in the bone to its final functional occlusion in the oral cavity and it is often used to indicate the moment of emergence of the tooth into the oral cavity\(^1\). The normal eruption of deciduous and permanent teeth into the oral cavity occurs over a broad chronologic age range. It can be influenced also by racial, ethnic, sexual and individual factors\(^2\). There are numerous eruptions regulating
molecules having similar and overlapping functions, which ensures that even the absence of a single factor does not interrupt the event of eruption. EGF, EGF-R, CSF-1, CSF-1R, IL-1, IL-1R, c-Fos, NFB, MCP-1, TGF-β1, PTHrP, Cbfa-1, OPG, RANK/RANK L are the major tooth eruption molecules. Majority of the eruption molecules reside in the dental follicle with few in the Stellate reticulum. Some genetic disorders may be responsible for abnormalities in the eruption. Significant deviations from accepted norms of eruption sequence are often observed in clinical practice. Premature eruption has been noted but delayed tooth eruption is the most commonly encountered. In normal eruption scenario, permanent teeth erupt eventually and replace their primary predecessors. However, some teeth fail to erupt. Most of these unerupted teeth are deviated or angulated aberrantly and eventually lose their potential to erupt and are referred to as impacted teeth. Epidemiological studies have reported dental impactions to affect 25 to 50% of human population. Impaction of teeth can result from biomechanical impediments, crowding and malpositioning of adjacent teeth, previous dento-alveolar trauma, insufficient maxillofacial skeletal development, thickened mucosal and osseous tissues, eruption disturbances, indirect effects of cysts or neoplasms. Impaction of a single tooth is a commonly observed clinical finding but impaction of multiple teeth is uncommon. Therefore, only a few cases of non-syndrome multiple impacted teeth were reported in literature. In those studies, the predominant explanation was that some physical barrier led to impaction and non-eruption of teeth. Multiple teeth impaction is often associated with multiple syndromes such as Cleidocranial dysplasia, Gardner's syndrome, Yunis-Varon syndrome, Gorlin-Sedano syndrome. It is also common in endocrine disorders such as hypothyroidism, hypopituitarism, hypoparathyroidism. Metabolic disorders like vitamin D deficiency are also associated with impacted teeth. Our patient was with multiple teeth impaction, but no features of any disorder or syndrome were diagnosed. Further investigation and medical history of the patient showed no signs of metabolic disorders like vitamin D deficiency. Impacted teeth are those which are prevented from eruption by some physical barrier in their path of eruption. In our case, it seems that there was no local factor leading to multiple impactions of the permanent teeth. The oral soft tissues in our case were unremarkable and histopathological evaluations of gingivae were normal. The clinical and radiographic examinations of our case revealed relatively normal jaws and teeth. Delayed or arrested eruption was probably caused by lacking of eruptive force due to either general, neurogenic or mucosal and bone disorder. This was a case of primary failure of tooth eruption with no other systemic involvement. Candidate genes for primary failure of eruption would be the molecules that function solely
in the pre-eruptive phase and are expressed in cells of the dental follicle and surrounding structures. Hence, it is likely that genes like CSF-1, NFB, and c-fos are the genes responsible for the eruption defect and hypodontia. Duration and results of treatment in less frequent cases of multiple impactions are a major concern when compared to more frequent single impaction cases. Multidisciplinary approach would be the appropriate choice as treatment involves aesthetics, functional, and oral health problems. In case of unerupted teeth, orthodontic extrusions should be attempted. Obtaining stable results along with enhanced aesthetics, oral health, and the most important function, mastication, are the objective of our treatment.

Conclusion

The appearance of simultaneous multiple impactions of permanent teeth can be observed in both sexes with a healthy systemic condition, without any symptoms of any syndrome. These non-syndromic cases of multiple impactions are very rare. Impaction of the maxillary first molar and maxillary and mandibular second permanent molars does not occur frequently. Therefore, it is important to make an early diagnosis in order to start treatment at an optimal time, since masticatory function is compromised as in the reported case. The decision on how to manage orthodontic treatment is individual and based on more general factors such as age, psychological profile of the child, position of the affected teeth, financial situation. These patients require a multidisciplinary approach to guide “eruption” of the teeth. The listed reasons show that the treatment of more impacted teeth in children is a real challenge, as is the particular case.

References

10.1038/sj.bdj.4805789.

