VALUE OF MRI IN MULTIMODAL TREATMENT OF LOCALLY ADVANCED RECTAL CARCINOMA

Ana Lazarova1, Andrej Nikolovski2, Violeta vasilevska-Nikodinovska1,3

1 University Clinic for surgical diseases „St Naum Ohridski“ Skopje, Department for radiology, Skopje, Republic of North Macedonia
2 University Clinic for surgical diseases „St Naum Ohridski“ Skopje, Department for abdominal surgery, Skopje, Republic of North Macedonia
3 Faculty of medicine, SS Cyril and Methodius University, Skopje, Republic of North Macedonia

Abstract

MRI is a basic tool in patient selection for preoperative neoadjuvant treatment of rectal carcinoma, with assessment of stage reduction. The aim of the paper was to evaluate chemoradiotherapy effects in advanced stage rectal carcinoma by comparison of MRI findings before and after chemoradiotherapy. Material and methods: Prospectively, MRI findings of 15 patients with rectal carcinoma confirmed at colonoscopy, were evaluated. In all patients preoperative neoadjuvant treatment was done and MRI restaging was performed after 6 to 8 weeks. MRI standard protocol was done on 1.5T machine, sagittal T2WI, axial T1WI, T2WI and DWI. On MRI was assessed tumor and nodal stage, presence of extra-mural invasion (EMVI), tumor localization within the rectum (low, medium, high rectum, recto-sigmoid junction). Computer tomography was performed in all patients for distant metastases assessment. Results: Out of 15 patients, 12 (80%) were male, and 3 (20%) were female, with a mean age of 65 years (range 50 to 80year). Six cases had middle rectum localization, 6 cases in low rectum, and 3 patients had recto-sigmoid localization. At initial MRI, 7 cases (46.6%) had MR signs for T3 stage, and 8 cases (53.3%) had T4 stage. Comparison of MRI results before and after chemoradiotherapy showed stage decreasing in 5 (33,3%) from T4 to T3 stage. Conclucion: MRI has a significant value in pre- and post-neoadjuvant therapy assessment of resection margins involved by tumor, positive extramural vascular invasion, and metastatic lymph node around resection margins. This is important for operative planning in order to avoid extensive resection with surgery techniques that preserve the anal sphincter.
Introduction

Rectal cancer is the third most common malignant disease worldwide after prostate cancer and lung cancer in men, and breast and lung cancer in the female population in the developed countries. Preoperative staging of rectal cancer with magnetic resonance imaging (MRI) is very important for the decision in further treatment of the disease, whether it would be chemoradiotherapy alone (neoadjuvant) or simple surgical treatment. This is aimed at achieving reduced recurrence rate and increasing of the 5-year survival rate. Preoperative chemoradiotherapy is very important because it can reduce the stage of advanced rectal cancer in some patients with good answer to the therapy. Also, the neoadjuvant therapy is used to minimize the risk of distant metastases, and if possible to perform less extensive surgical techniques. If the tumor is localized in low rectum, it is very important to use sphincter preservation technique instead of permanent colostomy.

The multimodal approach includes a short cycle of radiotherapy, combined with chemotherapy. The key point is whether patients are candidates only for surgical treatment or chemoradiotherapy before the surgical treatment. Besides other radiology diagnostic modalities, MRI is the best choice for rectal cancer staging, offering multiplanar projection, great resolution and good soft tissue contrast. MRI is also performed after chemoradiotherapy, before definitive surgery, to enable its planning, with restaging due to the expected reduction of the stage and size of the tumor after the neoadjuvant treatment.

The aim of this study was to evaluate chemoradiotherapy effects in advanced stage rectal carcinoma by comparison of MRI findings before and after chemoradiotherapy.

Material and methods

Prospectively were evaluated pelvic MRIs in 15 patients with an advanced stage of rectal cancer proven at colonoscopy with age range from 50 to 80 years, and an average age of 65 ± 10.2 years. Inclusion criteria were: patients with proven rectal cancer by colonoscopy in whom pre-operative staging with MRI was indicated. Patients with metal implant or with claustrophobia were excluded. In all patients a preoperative MRI staging was performed in order to determine tumor (T) and nodal (N) stage, presence of extra-mural vascular invasion (EMVI), with assessment of the level of tumor localization within the rectum (low, medium, high rectum, and recto-sigmoid junction). Computer tomography (CT) was performed in all patients to assess presence of distant metastases. The pelvic MRI was done on 1.5 T machine, with the standard protocol: sagittal T2WI, axial T1 WI, T2 WI and DWI. Initial MRI was without contrast media. After neoadjuvant treatment, pelvic MRI and restaging was done with intravenous administration of gadolinium in order to assess the effects of chemoradiotherapy.

According to the level of tumor localization, it was divided into three groups: within low rectum when its localization was up to 5 cm from the anorectal junction, in the mid-rectum from 5 to 10 cm from the anorectal junction, and 10 cm above the anorectal junction was a high rectal localization of the tumor.
T3 stage is when the tumor penetrates the rectal wall and grows into the mesorectal adipose tissue. If the tumor is less than 2 mm from the mesorectal fascia nearby or is infiltrated, then it is a potential seizure that requires preoperative neoadjuvant treatment. T4 stage is when the tumor grows in neighboring organs or they are infiltrated by the tumor (vagina, uterus in women, prostate in men as well as in muscular and pelvic organs). If the tumor infiltrates the vagina or the prostate the organ loses its normal morphology and structure locally, then, fat line between tumor and the organ cannot be visualized and the infiltrated part of the organ becomes with heterogenic signal intensity and has the same characteristics like the tumor itself which is in continuity.12

Local nodal staging determines the number of MRI suspected positive lymph nodes. Although metastatic altered LNs are larger than benign ones, metastatic deposits (MS) may also be present in small LNs. Most often the size of LN with MS-deposits is 5 - 8 mm, with irregular contours and mixed signal intensity. When evaluating mesorectal nodules, the distance to the mesorectal fascia should be taken into account. Distance less than 2 mm is a sign for local recidive.20

Extramural vascular invasion (EMVI) is accounted as positive on MRI when the small blood vessels within mesorectum and under muscularis propria, are thickened, with irregular contours, and with heterosignal intensity with large size and diameter which makes it visible for MRI detection. This is a MR sign of existence of MS deposits in intramural blood vessels. It is best visualized at axial T2WI and DWI. After neoadjuvant treatment there are changes in the presentation of EMVI. This effect was visualized by MRI signs of formation a fibrosis, which has hyposignal characteristics on T1WI and T2 WI, has flat margins and is at the places of previous with metastatic embolus changed EMVI.

The obtained data were analyzed with the statistical computer program SPSS 23.0 for Windows.

Results

Out of 15 patients, 12 (66.7%) were male, and 3 (33.3%) were female, with a mean age of 65 ± 10.2 years (age range 50 to 80 years). Rectal cancer was localized in the middle rectum in 6 cases, as well as in the low rectum.
and in 3 patients the recto sigmoid part was affected by the malignant process.

Five (33.3%) had metastatic deposits at the initial MRI examination. Four of them (80%) had liver metastases, and one patient had both liver and lung metastases.

At initial MRI, 7 cases (46.6%) had MR signs for T3 stage of rectal cancer, and in 8 cases (53.3%) the stage of rectal cancer was T4.

Comparison of MRI results before and after chemo radiotherapy treatment showed that in 5 patients there was a change in the findings in relation to T-staging. Of the 15 patients, in 5 patients (33.3%) T stage decreased from T4 to T3 stage. In the remaining 10 patients (66.67%) there were no changes in the T stage.

In 11 patients (73.7 %), the change in EMVI status was seen after MR therapy (Table 1). All 11 patients who had positive EMVI, after therapy became EMVI negative. The other 4 patients had still positive EMVI. Statistically significant was the difference in EMVI status determined by MR, before and after chemoradiotherapy (p = 0.0026).

Table 1. EMVI status before /after therapy

<table>
<thead>
<tr>
<th>EMVI status /changes</th>
<th>n (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>no</td>
<td>4 (26.67)</td>
</tr>
<tr>
<td>yes</td>
<td>11 (73.33)</td>
</tr>
</tbody>
</table>

Table 2. Number of LNs before and after therapy

<table>
<thead>
<tr>
<th>Number of lymph nodes per patient</th>
<th>Before therapy n (%)</th>
<th>After therapy n (%)</th>
<th>p = level</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>2 (13.33)</td>
<td>0.00065 sig</td>
</tr>
<tr>
<td>1</td>
<td>7 (46.67)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1 (6.67)</td>
<td>5 (33.33)</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>5 (33.33)</td>
<td>1 (6.67)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>5 (33.33)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>3 (20)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1 (6.67)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Wilcoxon Matched Pairs Test = 3.4 p=0.000655
All patients before therapy had metastatic lymph nodes in the mesorectum, and after therapy the number was reduced in all patients, and two patients (13.3%) had no metastatic lymph nodes (Table 2).

The patient, who had 2 MS changed LNs on MR before therapy, after therapy was negative. Of five patients, who had 3 MS changed LNs before therapy, one had no MS LNs and 4 had only one MS LN after therapy. Of five patients, who had 4 MS LNs before therapy, 3 patients had only one MS LN, and 2 patients had only 2 MS LNs after therapy. Of five patients, who had 4 MS LNs before therapy, 3 patients had only one MS LN, and 2 patients had only 2 MS LNs after therapy. Of three patients, who had 5 MS LNs before therapy, 3 patients had 2 MS LNs after therapy. One patient who had 7 MS LNs before therapy, had only 3 metastatic changed LNs after therapy.

Discussion

The preoperative chemoradiotherapy or neoadjuvant treatment increases the 5-year survival rate while achieving negative circulatory resection margins. It can also provide sphincter-saving techniques in patients with low rectal tumors by reducing the stage of the locally advanced tumor process.

Post-chemoradiotherapy MRI restaging is performed in order to determine the condition after the neoadjuvant treatment, which would also affect the choice of surgical technique.

Rectal cancer restaging is a comparison of all MR parameters before and after neoadjuvant treatment by using the same MRI protocol.

Initial MRI was without contrast media administration due to partial volume effect given by the contrast medium that can interpret the more advanced stages of rectal cancer at the primary MRI staging before neoadjuvant treatment. After neoadjuvant treatment, pelvic MRI and restaging was done with intravenous administration of gadolinium, in order to assess the effects of chemoradiotherapy: desmoplastic reaction which has to be differentiated from viable tumor, and changes in the extramural vascular invasion (EMVI). Also, administration of contrast medium provides better insight into the metastatic changes of lymph nodes.

When it comes to changes of T4 to T3 stages at MRI contrast administration gives adequate view of the fibrotic changes where viable tumor was first present, showing chemoradiotherapy effects, with decreasing of the tumor size which leads to down-stage of the rectal carcinoma.

The anatomical localization of the rectum, its fixation on the pelvic floor and fat tissue, as well as the absence of peristalsis, which avoids moving artifacts, makes it an ideal organ for recording with the MRI imaging method.

Candidates for preoperative neoadjuvant treatment are patients in advanced stage (T3b and T4 stage) disease, patients with involved resection margins, patients in stage T3 and T4 with positive LNs, and positive extramural vascular induction, also tumors localized in a low rectum where a reduction of extensibility of the process is required in order to approach sphincter preservation techniques.

In our study, a comparison of MRI results before and after chemoradiotherapy treatment showed that in 33.3% of the cases there were MRI signs of change from T4 to T3 stage. Change of EMVI status after therapy was found in 73.3% of the cases. Prior
to neoadjuvant treatment, the MRI finding in all patients presented with positive lymphatic status. After the therapy, the MRI finding showed a significant regression of metastatic lymph nodes.

All patients before therapy had metastatic lymph nodes in the mesorectum, and after therapy the number was reduced in all patients and two patients (13.3%) had no metastatic lymph nodes (Table 2).

EMVI is an independent prognostic indicator in the treatment of rectal cancer, but has recently been taken as an important indicator in making the decision to start neoadjuvant treatment.13,16

Positive EMVI affects the increase in the number of postoperative relapses and is therefore taken into account when deciding to start preoperative neoadjuvant treatment.17

In this study, 73.7\% of the cases showed statistically significant changes in EMVI status after MR therapy from positive to negative EMVI.

Although this group of 15 patients is small for more significant statistical analysis, it is a sufficient indicator of the direction in the treatment of rectal cancer. It confirms the importance of multimodal treatment of rectal cancer, especially in reducing tumor size, allowing for negative resection margins, reducing nodal status, and altering the positive extramural vascular invasion.

Opportunities are opened for its greater application in the future, bringing it closer to world standards in that field in order to improve the overall treatment of rectal cancer, which would increase the 5-year survival rate, reduce recurrence rate or overall benefit of the patient in the struggle and victory of the disease.

Conclusion

Magnetic resonance imaging has a significant value in evaluating of all T4 stages of rectal cancers and T3 stages in which resection margins are involved by the tumor, tumors in which there is a finding of a positive extramural vascular invasion, and malignant lymph node around the resection margin. This is very important in making decision for preoperative chemoradiotherapy, as well as in the assessment of the post-neoadjuvant treatment. In the case of tumor growth near the mesorectal fascia, this would mean less extensive resection and application of surgical techniques to preserve the anal sphincter. This is especially important for surgeons to prevent the development of permanent colostomy, which will significantly improve the patient quality of life.

References

5. Gollub MJ, Gultekin DH, Akin

