Micromastia or breast hypoplasia is described as underdevelopment of a woman’s mammary tissue. We present the case of a 15-year-old girl with unilateral micromastia, with familial predisposition. Ultrasound, hormonal, dysmorphic, cardiologic, genetic examinations and testing were performed. No mutation in the whole-exome sequencing was found, nor novel mutation. Some of these cases have been reported to be related to breast cancer so further follow-up is mandatory. Therapy consists of surgical reconstruction on affected side. This is a rare condition and it requires a multidisciplinary approach.
Introduction

Micromastia or breast hypoplasia is a condition which is described as postpubertal underdevelopment of a woman's mammary tissue. Breast hypoplasia may be congenital or acquired. The defect can be isolated or associated with other pathology, including syndromes and chest wall anomalies; it can also be unilateral or bilateral. Bilateral breast hypoplasia may be either symmetric or asymmetric. Histologically, both unilateral and bilateral hypoplastic breast tissue consists of fibrous stroma and ductal structures without differentiation. Many authors have recommended that treatment be performed until breast development is complete (Tanner stage 5), with a stable adult weight and breast volume for one year. Breast hypoplasia carries a psychological aspect almost always in young girls, so they may have low self-esteem, social anxiety, shame, depression etc. Thus, it has to be dealt with caution, empathy and counseling, besides establishing a diagnosis. Unilateral congenital breast hypoplasia is a rare anomaly of breast development, which incidence is unclear.

Case report

We present a 15-year-old girl, referred to the Pediatric Endocrinology Department of the University Children's Hospital, by the child's family doctor, due to micromastia of the left breast. She had no history of prior illness and the pregnancy of the mother was uneventful, without any given medication or a history of infection. The delivery, neonatal and postnatal period was normal. At examination, pubertal Tanner stage was B5 right breast, B2 left breast, pubic hair P5, axillary hair A5. She had her menstrual cycle at the age of 13, being regular. Her height was on the 50th percentile growth curve, while her weight was on the 75th percentile. The patient was otherwise healthy, without any other deformities or anomalies. From the family history her maternal grandmother had the same condition, which was never examined or treated. She is now 70-year-old without any present breast pathology. The patient's mother also had one smaller breast, although not significantly. The ultrasound of the breast showed hypoplasia of the mammary tissue on the left breast, while the other breast was normally developed without any pathological finding. Hormonal analysis was normal (estrogen, progesteron and gonadotropins levels). The ultrasound of the gonads was also normal and corresponded to her age (Picture No 1).

Mammography was not performed at the first visit, but it was planned for on the future visit. Due to the finding of the heart murmur, she was examined by a pediatric cardiologist, who found a mitral valve prolapse of minor significance.
A whole-exome sequencing was performed at the Genetics Department, Technical University, Munich, Germany, and it did not show any mutations of the genes most commonly associated with this condition or any novel mutation. The most common syndromic causes for congenital breast hypoplasia, Poland’s and Turner’s syndromes, were excluded.

Discussion

Rudimentary mammary ducts are found beneath the nipple in infancy and they grow and branch slowly during the prepubertal years. Estrogen stimulates the nipples to grow and progress to the stage at which ductules are formed, and fatty stromal growth to increase until it constitutes most of the mass of the breast. Hormones interact with breast stroma and local growth factors to stimulate the development of breast epithelium. Breast development normally occurs in girls between ages of 8 and 13 years. The rate of breast varies and development is often asymmetric. Complete development may not occur until a woman is in her early 20s.

Breast hypoplasia or micromastia represents a rare condition in pediatric and adolescent patients associated with some syndromes and chest wall abnormalities. According to some authors, breast abnormalities can be categorized into 3 groups, including hypoplastic, hyperplastic and deformational anomalies. Another author introduces a new classification based on asymmetry of breast. He proposes 4 main malformative asymmetry of breast: precocious primary groups with 3 subgroups, which are the asymmetry of breasts, secondary acquired, and tertiary-induced breast asymmetry.

Syndromes are also associated with hypoplastic breasts such as Poland’s syndrome, characterized by unilateral aplasia of the major pectoral muscle, thoracic and upper limb anomalies, often with unilateral breast hypoplasia on the same side. Turner’s syndrome is a result of chromosomal abnormalities and presents with specific clinical features, short stature, hypogonadism, absence of puberty and sexual development, and even some forms have scarce mammary tissue (depending on cariotype). Some authors have suggested that congenital unilateral hypoplasia of the breast may be caused by underexpression of the estrogen receptor in the breast and other expression in hypetrophy. Estrogen and progesteron play a role in breast development, and also in breast cancer susceptibility. The BRCA1 gene normally restrains mammary growth by inhibiting expression of estrogen receptor ERa and PRs and cancer-related mutation reverse these processes.

Few gene mutations have been implicated as the most common culprits causitive of the nonsyndromic cases. Inherited autosomal variants are studied in genome-wide association variantsthat can play a role. Three genetic phenomena can induce risk in maternal versus paternal lineages of affected individuals: maternal effects on prenatal development, mitochondrial variants, and autosomal genes. Other authors implicate the risk of asymmetry is associated with elevated breast cancer risk. Coordination between pediatricians and pediatric plastic surgeons and careful timing for treatment to maximize functional and aesthetic outcomes have been proposed. Different surgical procedures have been proposed such as using autologous fat grafting, and a more recent procedure is the use of lipofilling. Otherwise, it is on the plastic surgeon to decide which technique to choose. In consultation with both the patient and the parents we decided that plastic surgery should be performed at the girl’s appropriate age.

Conclusion

A rare case of unilateral breast hypoplasia is presented. Although, many investigations regarding this condition have been performed, the etiology still remains unknown. In our case, it indicated a familial form of the anomaly, although the genetic testing was negative. The treatment will be a surgical reconstruction of the affected breast after the
child reaches a certain age. We also recommend future follow-up of the patient, due to a potential risk of breast cancer.

References

9. Geeroms B, Braysem L, Aertsen M. An atypical case of poland Syndrome with bilateral features and dextroposition of the heart: In the work-up of Poland syndrome, different imaging modalities are necessary to depict the full extent of the anomalies. J Belg Soc Radiol 2019;103(1):45

