ЈАВНО ЗДРАВЈЕ

ПРЕВАЛЕНЦА НА МЕТАБОЛНИОТ СИНДРОМ ВО ПЕЧКИОТ ОКРУГ

Ардита Кервеши-Сулејмани¹, Афердита Селманај², Игор Исјановски³, Розалинда Исјановска⁴

- 1 Инсшишуш за Јавно Здравје, Пришшина, Косово
- ² Ойшша болница, Печ, Косово
- ³ Универзи*шешскаша Клиника за очни болесши, Универзи*шеш "Св. Кирил и Мешодиј" Скойје, Рейублика Македонија
- 4 Медицински факулшеш, Универзишеш "Св. Кирил и Мешодиј" Скойје, Рейублика Македонија

Извадок

Цитирање: Кервеши-Сулејмани А, Селманај А, Исјановски И, Исјановска Р. Преваленца на метаболниот синдром во Печкиот округ. Арх J Здравје 2018: 10 (2); 40-47

Клучни зборови: метаболен синдром, јавното здравје, преваленција, обезитас

*Кореспонденција: Ардита Кервеши-Сулејмани, Институт за Јавно Здравје, Приштина,Косово.E-mail: ardita_kerveshi@yahoo.com

Примено: 26-апр-2018; **Ревидирано:** 17-јул-2018; **Прифатено:** 20-авг-2018; **Објавено:** 30-сеп-2018

Печатарски права:© 2018 Ардита Кервеши-Сулејмани. Оваа статија е со отворен пристап дистрибучрана под условите на нелокализирана лиценца, која овозможува неограничена употреба, дистрибуција и репродукција на било кој медиум, доколку се цитираат оригиналниот(ите) автор(и) и изворот.

Конкурентски интереси: Авторот изјавува дека нема конкурентски интереси.

Метаболниот синдром (МС) е главен клинички и јавноздравствен предизвик во светот во пресрет на урбанизација, вишок на енергетски внес, зголемување на дебелината, седентарен (седечки) начин на живот и навики. МС ќе предизвика за 5-пати зголемување на ризикот од дијабетес мелитус тип 2 (Т2DМ) и 2-пати зголемување на ризикот од кардиоваскуларни болести (КВБ) во текот на следни 5 до 10 години. Цел на истражувањето е да се одреди преваленцата на метаболниот синдром во регионот на Пеќ според критериумите на NCEP ATD III / 2001. Материјал и методи: Студија на пресек (сгоѕѕ sectional study) е спроведена во Општата болница во Печ, која преставува регионална болница за Печкиот округ. Примерокот се состои од 1667 пациенти во период од една година. Резултати: Кај анкетираните пациенти МС е застапен кај 506 пациенти. Во најголем процент анкетираните го исполнуваат условот систолен крвен притисок ≥ 130 mmHg -99.4%, потоа следи дијастолен крвен притисок ≥ 85 mmH-96.4%, покачени триглицериди ≥ 1.7 mmol/L-94.7%, обемот на половината > 88см кај жени -94.0%, покачени триглицериди ≥ 1.7 mmol/L-94.7%, обем на половината > 102см кај мажи-65.5%, вредности на HDL <1.03mmol/L кај мажи 56.9%, вредности на HDL <1.03mmol/L кај жени 51.5%. Просечната вредност на систолниот крвен притисок кај пациентите со МС изнесува 151.1±9.3mmHg. Просечната вредност на дијастолниот крвен притисок кај пациентите со МС изнесува 91.0±4.7mmHg. Просечната вредност на гликемија кај пациентите со МС изнесува 1.1±0.2 mmol/L. Просечната вредност на гликемија кај пациентите со МС изнесува 6.5±0.6 mmol/. Просечната вредност на гликемија кај пациентите со МС изнесува 1.1±0.2 mmol/L. Просечната вредност на гликемија кај пациентите со МС изнесува 6.5±0.8 mmol/L. Најзастапена кај пациентите со МС е гојазност/обеситас - 70.8%, со прекумерна тежина се 27.8%, и 1.4% се регистрираат нормална тежина. Заклучок: Преваленцијата на МС во Печкиот округ изнесува 30,4% и е приближно како во Хрватска 34%, и во Тетово со 28,25%, но зависи од популацијата и дефиниците што се корист

PUBLIC HEALTH

PREVALENCE OF THE METABOLIC SYN-DROME IN THE PECH DISTRICT

Ardita Kerveshi-Sulejmani¹, Aferdita Selmanaj², Igor Isjanovski³, Rozalinda Isjanovska⁴

- ¹ Institute of Public health, Pristina, Kosovo
- ² General Hospital, Pech, Kosovo
- University Clinic for Eye Diseases, Medical faculty, Ss. Cyril and Methodius University Skopje, Republic of Macedonia
- ⁴ Medical faculty, Ss. Cyril and Methodius University Skopje, Republic of Macedonia

Abstract

Citation: Kerveshi-Sulejmani A, Selmanaj A, Isjanovski I, Isjanovska R. Prevalence of the metabolic syndrome in the Pech district. Arch Pub Health 2018: 10 (2); 40-47 (English)

Key words: metabolic syndrome, public health, prevalence, obesitas

*Correspondence: Ardita Kerveshi-Sulejmani, Institute of Public health, Pristina, Kosovo. E-mail: ardita_kerveshi@yahoo.com

Received: 26-Apr-2018; **Revised:** 17-Jul-2018; **Accepted:** 20-Aug-2018; **Published:** 30-Sep-2018

Copyright:© 2018. Ardita Kerveshi-Sulejmani. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author(s) and source are credited.

 $\begin{tabular}{ll} \textbf{Competing Interests:} & \textbf{The author have declared that no competing interests} \\ \end{tabular}$

The metabolic syndrome (MS) is the main clinical and public health challenge in the world, in the wake of urbanization, excess energy intake, increased obesity, sedentary lifestyle and habits. MS leads to a 5-fold increase the risk of diabetes mellitus type 2 (T2DM) and 2 times the risk of cardiovascular disease (CVD) over the next 5 to 10 years. The aim of the research is to determine the prevalence of metabolic syndrome syndrome in the Pech District according to NCEP ATD III / 2001. Material and methods: Cross sectional study was carried out at the General Hospital in Pec, which represents a regional hospital for the Pec District. A total of 1667 patients from the Pech district were interviewed for a period of one year. Results: In the group, MS was present in 506 patients. In the majority of cases, we found the systolic blood pressure condition \geq 150 mmHg -99.4%, followed by diastolic blood pressure \geq 85 mmH-96.4%, elevated triglycerides \geq 1.7 mmol / 1.94.7%, waist circumference > 88 cm in women-94.0%, increased glycemia \geq 6.1mmol / L in 80.0%, waist circumference > 102cm in men-65.5%, HDL values <1.03mmol / L in men - 56.9% and HDL values <1.03mmol / L in females 51.5%. The mean value of systolic blood pressure in patients with MS is 151.1 \pm 9.3 mmHg. The average value of diastolic blood pressure in patients with MS is 91.0 \pm 4.7 mmHg. The average waist circumference of patients with MC was 103.6 \pm 9.2 cm. The mean HDL of patients with MS is 1.1 \pm 0.2 mmol / L. The average glycemic value in patients with MS is 6.5 \pm 0.6 mmol / Average triglyceride value in patients with MS and is 2.5 \pm 0.8 mmol / L. The most common in patients with MS is obesity / obesity - 70.8%, overweight is 27.8%, and 1.4% normal weight is registered. Conclusions: The prevalence of MS in the Pech district is 30.4% and was approximately as in Croatia 34% and Tetovo region with 28.25%, but it was dependent on the population and definitions used. The metabolic syndrome is one of the major public health problems, an

Introduction

Demographic changes combined with increased prevalence of obesity and physical inactivity and urbanization are the most risk factors that explain the increase in the metabolic syndrome problem in a global perspective. This is a common knowledge for decades, but nevertheless, very few studies focus on actual changes in lifestyle-related factors¹. The metabolic syndrome (MS) is the main clinical and public health challenge in the world in time of urbanization, increased energy intake, increased obesity, sedentary lifestyle and habits. MS will increase the risk of diabetes mellitus type 2 (T2DM) five times and 2 times the risk of cardiovascular disease (CVD) over the next 5 to 10 years².

In 1981, the term "metabolic syndrome" was used to describe the common occurrence of hyperlipoproteinaemia, diabetes, hypertension, gout, and obesity in combination with an increased incidence of cardiovascular disease, fatty liver and cholelithiasis³. The metabolic syndrome (MS) is one set of risk factors, which predispose to the development of type 2 diabetes (T2DM) and cardiovascular disease (CVD)⁴.

Several definitions of the Metabolic Syndrome (6 of the number) are proposed. The first definition is defined by the World Health Organization (WHO) in 1988, when the WHO makes an attempt to standardize the criteria^{5,6}.

The last harmonized definition is seventh, where 5 risk factors were considered as necessary⁴:

- increased waist according to the specifics of each country;
- 2. $triglycerides \ge 150 \text{ mg} / dl$,
- 3. HDL-C <40 mg/dl in men and <50 mg/dl in women,
- 4. Systolic blood pressure ≥ 130 mm Hg or diastolic blood pressure ≥ 85 mm Hg and
- 5. Fasting glucose> 100 mg / dl.

One of the definitions is the National Cholesterol Adult Tertiary Adult Tretman III (NCEP ATD III), a pan-III study program, introduced in 2001. According the definition, the definition of metabolic syndrome should have at least three of the following

factors5:

- 1. obesity (waist circumference of 102 cm> in men,> 88 cm in females)
- 2. Triglycerides ≥ 1.7 mmol / L
- 3. HDL-cholesterol <01.03 mmol / L in men, <1.29 mmol / L in women
- systolic blood pressure ≥ 130 mmHg and / or diastolic blood pressure ≥ 85 mmHg
- 5. glycemia ≥ 6.1mmol / L

In the world, the prevalence of MS ranges from <10% to 84%, depending on the region, urban or rural environment, the demographic characteristics (sex, age, race and ethnicity) of the population and which definition of the syndrome is used (7, 8).

Aim of the study is to to determine the prevalence of metabolic syndrome syndrome in the Pech District according to NCEP ATD III / 2001.

Material and methods

Cross sectional study was performed at the Pech's General Hospital, which is a regional hospital for the Pech district. Pech district is one of the seven districts in Kosovo. The Pech district covers the municipalities of Pech, Klin, Dechani and Istok, according to the latest report by UMNIK in 2011, the population is over 420,000 inhabitants. The administrative center of Pech district is Pech. The study included patients over 18 years, and the exclusion criterion was pregnancy. Demographic data and clinical parameters in this study are provided through a questionnaire. The WHO STEPS Instrument for Chronic Disease Risk Factor Surveillance was used, adapted to the population in Kosovo. The questionnaire consisted of 5 sections, after the pilot study suffered minor corrections and adjusted to the population in the Pech district.

Part I consists of sociodemographic data: sex, age, marital status, education, place of residence, employment, monthly income. Part II consists of questions for smoking (daily), alcohol consumption (daily consumption), consumption of salt/quantity, fruit (frequency and quantity), spice (frequency and quantity), meat, consumption of fat from animal or plant origin, physical activity during the day. Physical activity in

АРХИВИ НА ЈАВНОТО ЗДРАВЈЕ

patients according to the questionnaire refers to each daily activity divided into four levels. Part III consists of questions about noticed/registered hypertension, diabetes, familial history of diseases (hypertension, heart words, diabetes). Part IV consists of anthropometric measurements (height, weight, structure between crystalline or the lower rib, arterial pressure measured in a sitting position). V part consists of biochemical measurements (triglycerides, HDL-cholestrol, LDL, glycemia).

In this paper we analyzed part IV and V of

the questionnaire.

Kosovo uses the definition according to the National Cholesterol Education Program Adult Tretmant Panel III (NCEP ATD III).

Results

In the study, 1667 patients from Pech District were interview for a period of one year. 59.9% were from Pech, 16.6% were from the Istok, 13.7% were from Decani and 9.8% were from Klin (table 1).

city	number	%
Pech	999	59.9
Istok	276	16.6
Dechani	229	13.7
Klina	163	9.8
total	1667	100.0

Table 1: View of the respondents by place of residence

According to the analysis of the data MS was registered in 506 (30.4%) of interviewed patients, and in 69.6% (1161) not registered according to NCEP ATD III / 2001

conditions	number	%
1. triglycerides \geq 1.7 mmol / L	479	94.7
2. systolic blood pressure ≥ 130 mmHg	503	99.4
3. diastolic blood pressure ≥ 85 mmH	488	96.4
4. HDL <1.03mmol / L - men	99	56.9
5. HDL <1.29 mmol / L - women	171	51.5
6. waist circumference> 102cm - men	114	65.5
7. waist circumference> 88cm - women	312	94.0
8. Glucose ≥ 6.1mmol / L	405	80.0

Table 2: Characteristics of the interviewed patients with MS according NCEP ATD III / 2001

Most of the participants meet the conditions set by NCEP ATD III: systolic blood pressure \geq 130 mmHg -99.4%, followed by diastolic blood pressure \geq 85 mmH-96.4%, elevated triglycerides \geq 1.7 mmol / l-94.7%, waist circumference > 88cm

in women-94.0%, elevated glycaemia \geq 6.1mmol / l at 80.0%, waist circumference > 102cm in men-65.5%, HDL values <1.03mmol / L in men, 56.9% HDL values <1.03mmol / L in women 51.5% (tab 2).

height								
MS	average	N	Std.Dev.	minimum	maximum			
with	167,3	506	6,11	147,0	190,0			
without	169,4	1161	7,09	152,0	188,0			
	systolic BP							
with	151,1	506	9,93	125,0	180,0			
without	126,2	1161	9,57	111,0	160,0			
	diastolic BP							
with	91,0	506	4,74	80,0	110,0			
without	76,1	1161	6,80	60,0	95,0			
		W	eight					
with	89,2	506	10,37	65,0	125,0			
without	70,5	1161	8,85	50,0	99,0			
		waist cir	cumference					
with	103,6	506	9,29	82,0	138,0			
without	84,9	1161	7,57	63,0	109,0			
			HDL					
with	1,1	506	0,21	0,1	2,0			
without	1,4	1161	0,20	0,68	2,23			
	LDL							
with	4.0	506	1.03	1.0	10.0			
without	3.2	1161	0.62	1.5	5.4			
		gly	cemia					
with	6.5	506	0.58	4.4	9.0			
without	4.9	1161	0.44	3.2	6.7			
	triglycerides							
with	2,5	506	0,83	0,74	6,8			
without	1,3	1161	0,26	0,59	2,8			
cholesterol								
with	6,2	506	1,05	3,6	13,7			
without	5,2	1161	0,63	3,3	7,8			

Table 3: Anthropometric and biochemical measurements in the interviewed patients with and without MS

The average height in patients with MS is 167.3 ± 6.1 cm, and in the group without MS it is 169.6 ± 7.1 cm. According to the Mann-Whitney U test, the difference is statistically significant for p <0.05 (p = 0.000150)

The mean value of systolic blood pressure in patients with MS is indicated to be 151.1 \pm 9.3 mmHg, and in the group without MS it is 126.2 \pm 9.6 mmHg. According to the

Mann-Whitney U test, the difference is statistically significant for p <0.05 (p = 0.00). The average value of diastolic blood pressure in patients with MS is higher and amounts to 91.0 \pm 4.7 mmHg, and in the group without MS it is 76.1 \pm 6.8 mmHg. According to the Mann-Whitney U test, the difference is statistically significant for p <0.05 (p = 0.00). The average weight in patients with MS is higher and amounts to 89.2 \pm 0.4 kg, and in the group without MS it is 70.5 \pm 8.9 cm.

АРХИВИ НА ЈАВНОТО ЗДРАВЈЕ

According to the Mann-Whitney U test, the difference is statistically significant for p <0.05 (p = 0.000150).

The average waist circumference of patients with MC is higher and is 103.6 ± 9.2 cm, and in the group without MC it is 84.9 ± 7.6 cm. According to the Mann-Whitney U test, the difference is statistically significant for p <0.05 (p = 0.000150).

The mean HDL value in patients with MS is lower and is 1.1 ± 0.2 mmol / L, and in the group without MS it is 1.4 ± 0.2 mmol / L. According to the Mann-Whitney U test, the difference is statistically significant for p <0.05 (p = 0.00). The mean LDL value in patients with MS is higher and is 4.0 ± 1.0 mmol / L, and in the group without MS it is 3.2 ± 0.6 mmol / L. According to the Mann-Whitney U test, the difference is statistically significant for p <0.05 (p = 0.00).

The average glycemic value in patients with MS is higher and is 6.5 \pm 0.6 mmol / L (higher> 6.1 mmol / L than the predicted value with NCEP ATD III) and in the group without MS it is 4.9 \pm 0.4 mmol / L. According to the Mann-Whitney U test, the difference is statistically significant for p <0.05 (p = 0.00). The average triglyceride value in patients with MS is higher and is 2.5 \pm 0.8 mmol / L (higher than> 1.7 mmol / L of the predicted value with NCEP ATD III), and in the group

without MS it is 1.3 ± 0.3 mmol / L. According to the Mann-Whitney U test, the difference is statistically significant for p <0.05 (p = 0.00). The average cholesterol value in patients with MS is higher and amounts to 6.2 ± 1.1 mmol / L and in the MS without MS it is 5.2 ± 0.6 mmol / L. According to the Mann-Whitney U test, the difference is statistically significant for p <0.05 (p = 0.00) (tab 3).

Most patients with MS are obesity / obesity - 70.8%, overweight are 27.8%, and 1.4% normal weight (tab and graph 5), the percentage difference is statistically significant between versus the other modes of BMI for p <0.05 (Difference test, p = 0.0000)

The most common in patients without MS is the normal weight - 66.0%, overweight with 30.8%, and obesity with 3.2% (tab 4), the percentage difference is statistically significant between the normal weight versus other modalities of BMI for p <0.05 (Difference test, p = 0.0000)

The percentage difference of modalities between the two, BMI -normal weight versus obesity is statistically significant for p <0.05 (Difference test, p = 0.0000), and the percentage difference of modalities between the two, BMI - overweight is statically non-significant for p> 0.05 (Difference test, p = 0.2186)

BMI kg/m2		with MS		without MS	
		number	%	number	%
18,5 – 24.9	normal	7	1.4	766	66.0
25 – 29.9	overweight	141	27.8	358	30.8
>=30	obesity	358	70.8	37	3.2
total		506	100.0	1161	100.0

Table 4: Body Mass Index (BMI) in the interviewed patients with and without MS

Discussion

The prevalence of MS is increasing parallel with an increase the obesity / obesity epidemic. Two thirds of the population in America is overweight or obese, and more than a quarter of the population meets the criteria for MS. For 20 years, the survey in America has seen an increase in the prevalence of 27% (1988/94) to 32% (1999/00)1-10. According to world calculations, four out

of five deaths were MS consequences will occur in countries with low and middle income. In Europe and North America there are gradual changes in lifestyle over the centuries, where diet based on high carbohydrate intake is replaced by high protein intake. Similar changes occur in third world countries, but in many cases the transition takes place over decades. The combination of increased access to food, reduced physical activity leads to increased

prevalence of obesity, dyslipidaemia, hypertension, and hyperglycaemia / diabetes, the combination of which is called a metabolic syndrome¹⁻¹⁰.

Metabolic syndrome is a public health global problem. About a quarter of the European adult population is estimated to have metabolic syndrome, with similar prevalence being registered in Latin America10. It represents a new epidemic in the development of East Asian countries, including China, Japan and Korea. In Japan, the Ministry of Health, Labor and Social Affairs introduced a screening and intervening program11. The metabolic syndrome was recognized as very common problems in many other countries in the world¹²⁻¹⁷.

The results of the study show a high prevalence of MS in the Pech District in 30.4% of the interviewed patients. Systolic blood pressure was ≥ 130mmHg in 99.4% of participants, followed by diastolic blood pressure ≥ 85mmHg in 96.4%, elevated triglycerides ≥ 1.7 mmol/l in 94.7%, waist > 88cm in women 94.0%, elevated glycose ≥ 6.1mmol/L in 80.0%, waist > 102cm in men-65.5%, decreased HDL<1.03mmol/L in men-56.9% and HDL values <1.29mmol/L in females 51.5%. Such a prevalence of factors that determine MS can lead to an increase the rate of cardiovascular disease and diabetes.

Similar conclusions come from the study prepared in 2012 in the Tetovo region where the prevalence of MS is 28.25% and there was a high prevalence of arterial hypertension, hypertriglyceridemia and visceral adipositis. The rate of elevated triglyceride levels was 39.05%, decreased levels of HDL-C 46.35%, visceral adipositus up 43.17%, increased glucose up to 25.24%, and increased arterial pressure at 52.06%. The limit value in the study of hyperglycaemia is 5.6 mmol/L, and in our study it was 6.1 mmo /L. The study shows a high prevalence of metabolic syndrome by sex, age and ethnicity, as well as related socio-economic and behavioral indicators, such as education levels, family income levels, and degree of physical activity¹⁸.

In a study performed in Greece in 9696 people, the overall prevalence according to the definition of NCEP-ATP III was lower -24.5%¹⁹. Lower prevalence was registered in Bulgaria in 575 healthy people -23%²⁰.

The study performed in Romania, with 2200 participants, has shown that prevalence was 24%. A larger prevalence was registered in Croatia 34% ^{21,22}. A higher prevalence of MS was recorded in the United States of the general population of 34% in the NHANES study 2003-2006 (National Health and Examination Survey Nutrition), the 1988-1994 prevalence according to the criteria ATPIII was 29,20%²³.

The Korean epidemiological study "Korean National Health and Nutrition Examination Survery" for the period 1998-2007, has shown continuous increase of the prevalence, in 1998 it was 24.9%, in 2001-29.2%, in 2005-30.4%, and in 2007 - 31.3% ²⁴.

In some Western European countries, a stagnation of prevalence has been registered in recent years as a result of measures taken to reduce risk factors such as in the MONA LISA study in France, it was made comparison between 3405 respondents in 1996 and 3554 respondents in 2006²⁵.

Kaur et al. ²⁶ reported that worldwide the prevalence of the Metabolic Syndrome (MS) was between 10 and 84% depending on ethnicity, age, gender, and race, while IDF estimates that a quarter of the world's population has MS. According to Pal and Ellis²⁷, 20% of adults in the Western world had MS.

From 2003 to 2012, the overall prevalence of metabolic syndrome in the United States was 33% (95% CI, 32.5% -33.5%) ²⁸.

A study in Turkey found that the prevalence of metabolic syndrome was $34.6\%^{29}$. Tan et al. showed that 96.1%, 95.8%, 84.8% and 97.7% of 313 diabetic patients aged \geq 30 years had metabolic syndrome, using the definition of NCEP, ATPIII, IDF and harmonized definition³⁰.

According to the study of Beltrán-Sánchez and colleagues³¹, the MS was a combination of health disorders such as obesity, high blood pressure, type 2 diabetes, decreased lipids, contributing to cardiovascular disease and death.

Conclusions

The prevalence of MS in the Pech district was 30.4% and was approximately as in Croatia 34% and Tetovo region with 28.25%, but it is dependent on the population and

definitions used.

The prevalence of systolic blood pressure ≥ 130 mmHg is 99.4% and the prevalence of diastolic blood pressure ≥ 85 mmH was 96.4%. Prevalence of elevated triglycerides ≥ 1.7 mmol/L was 94.7%.The prevalence of waist > 88cm in women was 94.0% and waist > 102cm in men was 65.5%. Prevalence of increased glucose ≥ 6.1mmol/L was 80.0%. Prevalence of reduced HDL <1.03mmol/L in men -56.9% and HDL values <1.29 mmol / L in women 51.5%

References

- 1. Borch-Johnsen K. The metabolic syndrome in a global perspective. Dan Medical Bulletin 2007; 54(2):157-159.
- 2. K. G. M. M. Alberti, R. H. Eckel, S. M. Grundy et al. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the study of obesity. Circulation 2009;120(16): 1640–1645.
- 3. Leslie B. Metabolic syndrome: Historical perspectives. The American Journal of the Medical Sciences 2005; 330(6): 264-268.
- 4. Lam DW, LeRoith D. Metabolic Syndrome. South Dartmouth (MA): MD-Text.com, Inc.; 2000-.2017 . Available at https://www.ncbi.nlm.nih.gov/books/NBK278936/
- 5. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (Adult Treatment Panel III). JAMA 2001; 285:2486-2497.
- 6. Grundy S, Cleeman J, Daniels S, Donato K, Eckel B, Franklin B, Gordon D, Krauss R, Savage R, Smith S, Spertus J and Costa F. Diagnosis and management of the metabolic syndrome: An American Heart association/National Heart, Lung and Blood Institute Scien-

- tific Statement: Executive Summary. Circulation 2005; 112: 285-290.
- 7. Desroches S, Lamarche B. The evolving definitions and increasing prevalence of the metabolic syndrome. Applied Physiology Nutrition and Metabolism 2007; 32(1): 23–32.
- 8. Kolovou GD, Anagnostopoulou KK, Salpea KD, Mikhailidis DP. The prevalence of metabolic syndrome in various populations. The American Journal of the Medical Sciences 2007; 333 (6): 362–371.
- 9. Ford ES. Prevalence of the metabolic syndrome defined by the International Diabetes Federation among adults in the U.S. Diabetes Care 2005; 28: 2745–2749
- 10. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol 2008; 28(4):629-36.
- 11. Kohro T, Furui Y, Mitsutake N, et al. The Japanese national health screening and intervention program aimed at preventing worsening of the metabolic syndrome. Int Heart J 2008; 49(2):193-203.
- 12. Kolovou GD, Anagnostopoulou KK, Salpea KD, et al. The prevalence of metabolic syndrome in various populations. Am J Med Sci 2007; 333(6):362-71.
- 13. Hu G, Lindstrom J, Jousilahti P, et al. The increasing prevalence of metabolic syndrome among Finnish men and women over a decade. J Clin Endocrinol Metab 2008; 93(3):832-836.
- 14. Erem C, Hacihasanoglu A, Deger O, et al. Prevalence of metabolic syndrome and associated risk factors among Turkish adults: Trabzon MetS study. Endocrine 2008; 33(1):9-20.
- 15. Mahadik SR, Deo SS, Mehtalia SD. Increased prevalence of metabolic syndrome in non-obese Asian Indian-an urban-rural comparison. Metab Syndr Relat Disord 2007; 5(2):142-152.
- 16. Mokan M, Galajda P, Pridavkova D, et al. Prevalence of diabetes mellitus and metabolic syndrome in Slovakia. Diabetes Res Clin Pract 2008; 81(2):238-242.

- 17. Malik M, Razig SA. The prevalence of the metabolic syndrome among the multiethnic population of the United Arab Emirates: a report of a national survey. Metab Syndr Relat Disord 2008; 6(3):177-186.
- 18. Rexhepi A. Metabolic syndrome of adults in the population of the region Tetova, The doctoral dissertation, Medical Faculty Tirane 2012.
- 19. Athyros VG, Ganotakis ES, Bathianaki M, Monedas I, Goudevenos IA, Papageorgiou AA, Papathanasiou A, Kakafika AI, Mikhailidis DP, Elisaf M. Awareness, treatment and control of the metabolic syndrome and its components: a multicentre Greek study. Hellenic J Cardiol 2005;46:380–386.
- 20. Temelkova-Kurktschiev T, Kurktschiev D, Vladimirova-Kitova L, Vaklinova I, Bonov P. High prevalence of metabolic syndrome in populations at high and low cardiovascular risk in Bulgaria Journal of Diabetology 2010; 1:2
- 21. Parcalaboiu L. Prevalence of Metabolic Syndrome in an Adult Population from Targu Jiu. Applied Medical Informatics 2010; 27: 23-28.
- 22. Moebus S, Hanisch J, Bramlage P, Lösch C, Hauner H, Wasem J, Jöckel K. Regional differences in the prevalence of the metabolic Syndrome in primary care practices in Germany. Dtsch Arztebl Int 2008; 105(12): 207-13;
- 23. Mozumdar A, Liguori G. Persistent increase of prevalence of metabolic syndrome among U.S. Adults: NHANES III to NHANES 1999–2006. Diabetes Care 2011; 34:216–219.
- 24. Lim S, Šin H, Song JH et al. Increasing prevalence of metabolic syndrome in Korea. The Korean National Health and Nutrition Examination Survey for 1998–2007. Diabetes Care 2011; 34:1323–1328.
- 25. Wagner A, Haas B, Bongard V, Dallongeville J, Cottel D, Ferrières J, Arveiler D. Prevalence and trends of the metabolic syndrome in French adults: the MONALISA Study. Archives of Cardiovascular Diseases Supplements 2010;

- 2(1): 92-93.
- 26. Kaur JA. Comprehensive review on metabolic syndrome. Cardiol Res Pract 2014; 2014: 943162.
- 27. Pal S, Ellis V. The chronic effects of whey proteins on blood pressure, vascular function, and inflammatory markers in overweight individuals. Obesity 2010; 18: 1354–1359.
- 28. Aguilar M, Bhuket T, Torres Sh,et al. Prevalence of the Metabolic Syndrome in the United States, 2003-2012. JAMA May 19, 2015 Volume 313, Number 19.
- 29. Gündogan K, Bayram F, Capak M, Tanriverdi F, Karaman A, Ozturk A, Altunbas H, Gökce C, Kalkan A, Yazici C. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity, and dyslipidemia. Metab Syndr Relat Disord 2009; (5):427-34.
- 30. Tan AK, Dunn RA, Yen ST. Ethnic disparities in metabolic syndrome in Malaysia: an analysis by risk factors. Metab Syndr Relat Disord 2011; 9(6):441-51.
- 31. Beltrán-Sánchez H, Harhay M O, Harhay MM, Elligott Sean. Prevalence and trends of Metabolic Syndrome in the adult US population, 1999–2010. J Am Coll Cardiol 2013; 20;62(8):697-703.